Paper Reading AI Learner

An Information Retrieval Approach to Building Datasets for Hate Speech Detection

2021-06-17 19:25:39
Md Mustafizur Rahman, Dinesh Balakrishnan, Dhiraj Murthy, Mucahid Kutlu, Matthew Lease

Abstract

Building a benchmark dataset for hate speech detection presents several challenges. Firstly, because hate speech is relatively rare -- e.g., less than 3\% of Twitter posts are hateful \citep{founta2018large} -- random sampling of tweets to annotate is inefficient in capturing hate speech. A common practice is to only annotate tweets containing known ``hate words'', but this risks yielding a biased benchmark that only partially captures the real-world phenomenon of interest. A second challenge is that definitions of hate speech tend to be highly variable and subjective. Annotators having diverse prior notions of hate speech may not only disagree with one another but also struggle to conform to specified labeling guidelines. Our key insight is that the rarity and subjectivity of hate speech are akin to that of relevance in information retrieval (IR). This connection suggests that well-established methodologies for creating IR test collections might also be usefully applied to create better benchmark datasets for hate speech detection. Firstly, to intelligently and efficiently select which tweets to annotate, we apply established IR techniques of {\em pooling} and {\em active learning}. Secondly, to improve both consistency and value of annotations, we apply {\em task decomposition} \cite{Zhang-sigir14} and {\em annotator rationale} \cite{mcdonnell16-hcomp} techniques. Using the above techniques, we create and share a new benchmark dataset\footnote{We will release the dataset upon publication.} for hate speech detection with broader coverage than prior datasets. We also show a dramatic drop in accuracy of existing detection models when tested on these broader forms of hate. Collected annotator rationales not only provide documented support for labeling decisions but also create exciting future work opportunities for dual-supervision and/or explanation generation in modeling.

Abstract (translated)

URL

https://arxiv.org/abs/2106.09775

PDF

https://arxiv.org/pdf/2106.09775.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot