Paper Reading AI Learner

Recognising Biomedical Names: Challenges and Solutions

2021-06-23 08:20:13
Xiang Dai

Abstract

The growth rate in the amount of biomedical documents is staggering. Unlocking information trapped in these documents can enable researchers and practitioners to operate confidently in the information world. Biomedical NER, the task of recognising biomedical names, is usually employed as the first step of the NLP pipeline. Standard NER models, based on sequence tagging technique, are good at recognising short entity mentions in the generic domain. However, there are several open challenges of applying these models to recognise biomedical names: 1) Biomedical names may contain complex inner structure (discontinuity and overlapping) which cannot be recognised using standard sequence tagging technique; 2) The training of NER models usually requires large amount of labelled data, which are difficult to obtain in the biomedical domain; and, 3) Commonly used language representation models are pre-trained on generic data; a domain shift therefore exists between these models and target biomedical data. To deal with these challenges, we explore several research directions and make the following contributions: 1) we propose a transition-based NER model which can recognise discontinuous mentions; 2) We develop a cost-effective approach that nominates the suitable pre-training data; and, 3) We design several data augmentation methods for NER. Our contributions have obvious practical implications, especially when new biomedical applications are needed. Our proposed data augmentation methods can help the NER model achieve decent performance, requiring only a small amount of labelled data. Our investigation regarding selecting pre-training data can improve the model by incorporating language representation models, which are pre-trained using in-domain data. Finally, our proposed transition-based NER model can further improve the performance by recognising discontinuous mentions.

Abstract (translated)

URL

https://arxiv.org/abs/2106.12230

PDF

https://arxiv.org/pdf/2106.12230.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot