Paper Reading AI Learner

ACN: Adversarial Co-training Network for Brain Tumor Segmentation with Missing Modalities

2021-06-28 11:53:11
Yixin Wang, Yang Zhang, Yang Liu, Zihao Lin, Jiang Tian, Cheng Zhong, Zhongchao Shi, Jianping Fan, Zhiqiang He

Abstract

Accurate segmentation of brain tumors from magnetic resonance imaging (MRI) is clinically relevant in diagnoses, prognoses and surgery treatment, which requires multiple modalities to provide complementary morphological and physiopathologic information. However, missing modality commonly occurs due to image corruption, artifacts, different acquisition protocols or allergies to certain contrast agents in clinical practice. Though existing efforts demonstrate the possibility of a unified model for all missing situations, most of them perform poorly when more than one modality is missing. In this paper, we propose a novel Adversarial Co-training Network (ACN) to solve this issue, in which a series of independent yet related models are trained dedicated to each missing situation with significantly better results. Specifically, ACN adopts a novel co-training network, which enables a coupled learning process for both full modality and missing modality to supplement each other's domain and feature representations, and more importantly, to recover the `missing' information of absent modalities. Then, two unsupervised modules, i.e., entropy and knowledge adversarial learning modules are proposed to minimize the domain gap while enhancing prediction reliability and encouraging the alignment of latent representations, respectively. We also adapt modality-mutual information knowledge transfer learning to ACN to retain the rich mutual information among modalities. Extensive experiments on BraTS2018 dataset show that our proposed method significantly outperforms all state-of-the-art methods under any missing situation.

Abstract (translated)

URL

https://arxiv.org/abs/2106.14591

PDF

https://arxiv.org/pdf/2106.14591.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot