Paper Reading AI Learner

Multi-modal Graph Learning for Disease Prediction

2021-07-01 03:59:22
Shuai Zheng, Zhenfeng Zhu, Zhizhe Liu, Zhenyu Guo, Yang Liu, Yao Zhao

Abstract

Benefiting from the powerful expressive capability of graphs, graph-based approaches have achieved impressive performance in various biomedical applications. Most existing methods tend to define the adjacency matrix among samples manually based on meta-features, and then obtain the node embeddings for downstream tasks by Graph Representation Learning (GRL). However, it is not easy for these approaches to generalize to unseen samples. Meanwhile, the complex correlation between modalities is also ignored. As a result, these factors inevitably yield the inadequacy of providing valid information about the patient's condition for a reliable diagnosis. In this paper, we propose an end-to-end Multimodal Graph Learning framework (MMGL) for disease prediction. To effectively exploit the rich information across multi-modality associated with diseases, amodal-attentional multi-modal fusion is proposed to integrate the features of each modality by leveraging the correlation and complementarity between the modalities. Furthermore, instead of defining the adjacency matrix manually as existing methods, the latent graph structure can be captured through a novel way of adaptive graph learning. It could be jointly optimized with the prediction model, thus revealing the intrinsic connections among samples. Unlike the previous transductive methods, our model is also applicable to the scenario of inductive learning for those unseen data. An extensive group of experiments on two disease prediction problems is then carefully designed and presented, demonstrating that MMGL obtains more favorable performances. In addition, we also visualize and analyze the learned graph structure to provide more reliable decision support for doctors in real medical applications and inspiration for disease research.

Abstract (translated)

URL

https://arxiv.org/abs/2107.00206

PDF

https://arxiv.org/pdf/2107.00206.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot