Paper Reading AI Learner

Malware Classification Using Deep Boosted Learning

2021-07-08 17:53:33
Muhammad Asam, Saddam Hussain Khan, Tauseef Jamal, Umme Zahoora, Asifullah Khan

Abstract

Malicious activities in cyberspace have gone further than simply hacking machines and spreading viruses. It has become a challenge for a nations survival and hence has evolved to cyber warfare. Malware is a key component of cyber-crime, and its analysis is the first line of defence against attack. This work proposes a novel deep boosted hybrid learning-based malware classification framework and named as Deep boosted Feature Space-based Malware classification (DFS-MC). In the proposed framework, the discrimination power is enhanced by fusing the feature spaces of the best performing customized CNN architectures models and its discrimination by an SVM for classification. The discrimination capacity of the proposed classification framework is assessed by comparing it against the standard customized CNNs. The customized CNN models are implemented in two ways: softmax classifier and deep hybrid learning-based malware classification. In the hybrid learning, Deep features are extracted from customized CNN architectures and fed into the conventional machine learning classifier to improve the classification performance. We also introduced the concept of transfer learning in a customized CNN architecture based malware classification framework through fine-tuning. The performance of the proposed malware classification approaches are validated on the MalImg malware dataset using the hold-out cross-validation technique. Experimental comparisons were conducted by employing innovative, customized CNN, trained from scratch and fine-tuning the customized CNN using transfer learning. The proposed classification framework DFS-MC showed improved results, Accuracy: 98.61%, F-score: 0.96, Precision: 0.96, and Recall: 0.96.

Abstract (translated)

URL

https://arxiv.org/abs/2107.04008

PDF

https://arxiv.org/pdf/2107.04008.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot