Paper Reading AI Learner

Learning Facial Representations from the Cycle-consistency of Face

2021-08-07 11:30:35
Jia-Ren Chang, Yong-Sheng Chen, Wei-Chen Chiu

Abstract

Faces manifest large variations in many aspects, such as identity, expression, pose, and face styling. Therefore, it is a great challenge to disentangle and extract these characteristics from facial images, especially in an unsupervised manner. In this work, we introduce cycle-consistency in facial characteristics as free supervisory signal to learn facial representations from unlabeled facial images. The learning is realized by superimposing the facial motion cycle-consistency and identity cycle-consistency constraints. The main idea of the facial motion cycle-consistency is that, given a face with expression, we can perform de-expression to a neutral face via the removal of facial motion and further perform re-expression to reconstruct back to the original face. The main idea of the identity cycle-consistency is to exploit both de-identity into mean face by depriving the given neutral face of its identity via feature re-normalization and re-identity into neutral face by adding the personal attributes to the mean face. At training time, our model learns to disentangle two distinct facial representations to be useful for performing cycle-consistent face reconstruction. At test time, we use the linear protocol scheme for evaluating facial representations on various tasks, including facial expression recognition and head pose regression. We also can directly apply the learnt facial representations to person recognition, frontalization and image-to-image translation. Our experiments show that the results of our approach is competitive with those of existing methods, demonstrating the rich and unique information embedded in the disentangled representations. Code is available at this https URL .

Abstract (translated)

URL

https://arxiv.org/abs/2108.03427

PDF

https://arxiv.org/pdf/2108.03427.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot