Paper Reading AI Learner

MBRS : Enhancing Robustness of DNN-based Watermarking by Mini-Batch of Real and Simulated JPEG Compression

2021-08-18 15:47:37
Zhaoyang Jia, Han Fang, Weiming Zhang

Abstract

Based on the powerful feature extraction ability of deep learning architecture, recently, deep-learning based watermarking algorithms have been widely studied. The basic framework of such algorithm is the auto-encoder like end-to-end architecture with an encoder, a noise layer and a decoder. The key to guarantee robustness is the adversarial training with the differential noise layer. However, we found that none of the existing framework can well ensure the robustness against JPEG compression, which is non-differential but is an essential and important image processing operation. To address such limitations, we proposed a novel end-to-end training architecture, which utilizes Mini-Batch of Real and Simulated JPEG compression (MBRS) to enhance the JPEG robustness. Precisely, for different mini-batches, we randomly choose one of real JPEG, simulated JPEG and noise-free layer as the noise layer. Besides, we suggest to utilize the Squeeze-and-Excitation blocks which can learn better feature in embedding and extracting stage, and propose a "message processor" to expand the message in a more appreciate way. Meanwhile, to improve the robustness against crop attack, we propose an additive diffusion block into the network. The extensive experimental results have demonstrated the superior performance of the proposed scheme compared with the state-of-the-art algorithms. Under the JPEG compression with quality factor Q=50, our models achieve a bit error rate less than 0.01% for extracted messages, with PSNR larger than 36 for the encoded images, which shows the well-enhanced robustness against JPEG attack. Besides, under many other distortions such as Gaussian filter, crop, cropout and dropout, the proposed framework also obtains strong robustness. The code implemented by PyTorch \cite{2011torch7} is avaiable in this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2108.08211

PDF

https://arxiv.org/pdf/2108.08211.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot