Paper Reading AI Learner

PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier

2021-08-20 12:09:33
Chong Xiang, Saeed Mahloujifar, Prateek Mittal

Abstract

The adversarial patch attack against image classification models aims to inject adversarially crafted pixels within a localized restricted image region (i.e., a patch) for inducing model misclassification. This attack can be realized in the physical world by printing and attaching the patch to the victim object and thus imposes a real-world threat to computer vision systems. To counter this threat, we propose PatchCleanser as a certifiably robust defense against adversarial patches that is compatible with any image classifier. In PatchCleanser, we perform two rounds of pixel masking on the input image to neutralize the effect of the adversarial patch. In the first round of masking, we apply a set of carefully generated masks to the input image and evaluate the model prediction on every masked image. If model predictions on all one-masked images reach a unanimous agreement, we output the agreed prediction label. Otherwise, we perform a second round of masking to settle the disagreement, in which we evaluate model predictions on two-masked images to robustly recover the correct prediction label. Notably, we can prove that our defense will always make correct predictions on certain images against any adaptive white-box attacker within our threat model, achieving certified robustness. We extensively evaluate our defense on the ImageNet, ImageNette, CIFAR-10, CIFAR-100, SVHN, and Flowers-102 datasets and demonstrate that our defense achieves similar clean accuracy as state-of-the-art classification models and also significantly improves certified robustness from prior works. Notably, our defense can achieve 83.8% top-1 clean accuracy and 60.4% top-1 certified robust accuracy against a 2%-pixel square patch anywhere on the 1000-class ImageNet dataset.

Abstract (translated)

URL

https://arxiv.org/abs/2108.09135

PDF

https://arxiv.org/pdf/2108.09135.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot