Paper Reading AI Learner

Improving 3D Object Detection with Channel-wise Transformer

2021-08-23 02:03:40
Hualian Sheng, Sijia Cai, Yuan Liu, Bing Deng, Jianqiang Huang, Xian-Sheng Hua, Min-Jian Zhao

Abstract

Though 3D object detection from point clouds has achieved rapid progress in recent years, the lack of flexible and high-performance proposal refinement remains a great hurdle for existing state-of-the-art two-stage detectors. Previous works on refining 3D proposals have relied on human-designed components such as keypoints sampling, set abstraction and multi-scale feature fusion to produce powerful 3D object representations. Such methods, however, have limited ability to capture rich contextual dependencies among points. In this paper, we leverage the high-quality region proposal network and a Channel-wise Transformer architecture to constitute our two-stage 3D object detection framework (CT3D) with minimal hand-crafted design. The proposed CT3D simultaneously performs proposal-aware embedding and channel-wise context aggregation for the point features within each proposal. Specifically, CT3D uses proposal's keypoints for spatial contextual modelling and learns attention propagation in the encoding module, mapping the proposal to point embeddings. Next, a new channel-wise decoding module enriches the query-key interaction via channel-wise re-weighting to effectively merge multi-level contexts, which contributes to more accurate object predictions. Extensive experiments demonstrate that our CT3D method has superior performance and excellent scalability. Remarkably, CT3D achieves the AP of 81.77% in the moderate car category on the KITTI test 3D detection benchmark, outperforms state-of-the-art 3D detectors.

Abstract (translated)

URL

https://arxiv.org/abs/2108.10723

PDF

https://arxiv.org/pdf/2108.10723.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot