Paper Reading AI Learner

An Automatic Image Content Retrieval Method for better Mobile Device Display User Experiences


Abstract

A growing number of commercially available mobile phones come with integrated high-resolution digital cameras. That enables a new class of dedicated applications to image analysis such as mobile visual search, image cropping, object detection, content-based image retrieval, image classification. In this paper, a new mobile application for image content retrieval and classification for mobile device display is proposed to enrich the visual experience of users. The mobile application can extract a certain number of images based on the content of an image with visual saliency methods aiming at detecting the most critical regions in a given image from a perceptual viewpoint. First, the most critical areas from a perceptual perspective are extracted using the local maxima of a 2D saliency function. Next, a salient region is cropped using the bounding box centred on the local maxima of the thresholded Saliency Map of the image. Then, each image crop feds into an Image Classification system based on SVM and SIFT descriptors to detect the class of object present in the image. ImageNet repository was used as the reference for semantic category classification. Android platform was used to implement the mobile application on a client-server architecture. A mobile client sends the photo taken by the camera to the server, which processes the image and returns the results (image contents such as image crops and related target classes) to the mobile client. The application was run on thousands of pictures and showed encouraging results towards a better user visual experience with mobile displays.

Abstract (translated)

URL

https://arxiv.org/abs/2108.12068

PDF

https://arxiv.org/pdf/2108.12068.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot