Paper Reading AI Learner

Densely Semantic Enhancement for Domain Adaptive Region-free Detectors

2021-08-30 10:21:10
Bo Zhang, Tao Chen, Bin Wang, Xiaofeng Wu, Liming Zhang, Jiayuan Fan

Abstract

Unsupervised domain adaptive object detection aims to adapt a well-trained detector from its original source domain with rich labeled data to a new target domain with unlabeled data. Previous works focus on improving the domain adaptability of region-based detectors, e.g., Faster-RCNN, through matching cross-domain instance-level features that are explicitly extracted from a region proposal network (RPN). However, this is unsuitable for region-free detectors such as single shot detector (SSD), which perform a dense prediction from all possible locations in an image and do not have the RPN to encode such instance-level features. As a result, they fail to align important image regions and crucial instance-level features between the domains of region-free detectors. In this work, we propose an adversarial module to strengthen the cross-domain matching of instance-level features for region-free detectors. Firstly, to emphasize the important regions of image, the DSEM learns to predict a transferable foreground enhancement mask that can be utilized to suppress the background disturbance in an image. Secondly, considering that region-free detectors recognize objects of different scales using multi-scale feature maps, the DSEM encodes both multi-level semantic representations and multi-instance spatial-contextual relationships across different domains. Finally, the DSEM is pluggable into different region-free detectors, ultimately achieving the densely semantic feature matching via adversarial learning. Extensive experiments have been conducted on PASCAL VOC, Clipart, Comic, Watercolor, and FoggyCityscape benchmarks, and their results well demonstrate that the proposed approach not only improves the domain adaptability of region-free detectors but also outperforms existing domain adaptive region-based detectors under various domain shift settings.

Abstract (translated)

URL

https://arxiv.org/abs/2108.13101

PDF

https://arxiv.org/pdf/2108.13101.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot