Paper Reading AI Learner

Using Topological Framework for the Design of Activation Function and Model Pruning in Deep Neural Networks

2021-09-03 14:58:17
Yogesh Kochar, Sunil Kumar Vengalil, Neelam Sinha

Abstract

Success of deep neural networks in diverse tasks across domains of computer vision, speech recognition and natural language processing, has necessitated understanding the dynamics of training process and also working of trained models. Two independent contributions of this paper are 1) Novel activation function for faster training convergence 2) Systematic pruning of filters of models trained irrespective of activation function. We analyze the topological transformation of the space of training samples as it gets transformed by each successive layer during training, by changing the activation function. The impact of changing activation function on the convergence during training is reported for the task of binary classification. A novel activation function aimed at faster convergence for classification tasks is proposed. Here, Betti numbers are used to quantify topological complexity of data. Results of experiments on popular synthetic binary classification datasets with large Betti numbers(>150) using MLPs are reported. Results show that the proposed activation function results in faster convergence requiring fewer epochs by a factor of 1.5 to 2, since Betti numbers reduce faster across layers with the proposed activation function. The proposed methodology was verified on benchmark image datasets: fashion MNIST, CIFAR-10 and cat-vs-dog images, using CNNs. Based on empirical results, we propose a novel method for pruning a trained model. The trained model was pruned by eliminating filters that transform data to a topological space with large Betti numbers. All filters with Betti numbers greater than 300 were removed from each layer without significant reduction in accuracy. This resulted in faster prediction time and reduced memory size of the model.

Abstract (translated)

URL

https://arxiv.org/abs/2109.01572

PDF

https://arxiv.org/pdf/2109.01572.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot