Paper Reading AI Learner

Graph-based Retrieval for Claim Verification over Cross-Document Evidence

2021-09-13 14:54:26
Misael Mongiovì, Aldo Gangemi

Abstract

Verifying the veracity of claims requires reasoning over a large knowledge base, often in the form of corpora of trustworthy sources. A common approach consists in retrieving short portions of relevant text from the reference documents and giving them as input to a natural language inference module that determines whether the claim can be inferred or contradicted from them. This approach, however, struggles when multiple pieces of evidence need to be collected and combined from different documents, since the single documents are often barely related to the target claim and hence they are left out by the retrieval module. We conjecture that a graph-based approach can be beneficial to identify fragmented evidence. We tested this hypothesis by building, over the whole corpus, a large graph that interconnects text portions by means of mentioned entities and exploiting such a graph for identifying candidate sets of evidence from multiple sources. Our experiments show that leveraging on a graph structure is beneficial in identifying a reasonably small portion of passages related to a claim.

Abstract (translated)

URL

https://arxiv.org/abs/2109.06022

PDF

https://arxiv.org/pdf/2109.06022.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot