Paper Reading AI Learner

ComicGAN: Text-to-Comic Generative Adversarial Network

2021-09-19 13:31:32
Ben Proven-Bessel, Zilong Zhao, Lydia Chen

Abstract

Drawing and annotating comic illustrations is a complex and difficult process. No existing machine learning algorithms have been developed to create comic illustrations based on descriptions of illustrations, or the dialogue in comics. Moreover, it is not known if a generative adversarial network (GAN) can generate original comics that correspond to the dialogue and/or descriptions. GANs are successful in producing photo-realistic images, but this technology does not necessarily translate to generation of flawless comics. What is more, comic evaluation is a prominent challenge as common metrics such as Inception Score will not perform comparably, as they are designed to work on photos. In this paper: 1. We implement ComicGAN, a novel text-to-comic pipeline based on a text-to-image GAN that synthesizes comics according to text descriptions. 2. We describe an in-depth empirical study of the technical difficulties of comic generation using GAN's. ComicGAN has two novel features: (i) text description creation from labels via permutation and augmentation, and (ii) custom image encoding with Convolutional Neural Networks. We extensively evaluate the proposed ComicGAN in two scenarios, namely image generation from descriptions, and image generation from dialogue. Our results on 1000 Dilbert comic panels and 6000 descriptions show synthetic comic panels from text inputs resemble original Dilbert panels. Novel methods for text description creation and custom image encoding brought improvements to Frechet Inception Distance, detail, and overall image quality over baseline algorithms. Generating illustrations from descriptions provided clear comics including characters and colours that were specified in the descriptions.

Abstract (translated)

URL

https://arxiv.org/abs/2109.09120

PDF

https://arxiv.org/pdf/2109.09120.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot