Paper Reading AI Learner

Identifying Autism Spectrum Disorder Based on Individual-Aware Down-Sampling and Multi-Modal Learning

2021-09-19 14:22:55
Li Pan, Jundong Liu, Mingqin Shi, Chi Wah Wong, Kei Hang Katie Chan

Abstract

Autism Spectrum Disorder(ASD) is a set of neurodevelopmental conditions that affect patients' social abilities. In recent years, deep learning methods have been employed to detect ASD through functional MRI (fMRI). However, existing approaches solely concentrated on the abnormal brain functional connections but ignored the importance of regional activities. Due to this biased prior knowledge, previous diagnosis models suffered from inter-site heterogeneity and inter-individual phenotypical differences. To address this issue, we propose a novel feature extraction method for fMRI that can learn a personalized lowe-resolution representation of the entire brain networking regarding both the functional connections and regional activities. First, we abstract the brain imaging as a graph structure, where nodes represent brain areas and edges denote functional connections, and downsample it to a sparse network by hierarchical graph pooling. Subsequently, by assigning each subject with the extracted features and building edges through inter-individual non-imaging characteristics, we build a population graph. The non-identically distributed node features are further recalibrated to node embeddings learned by graph convolutional networks. By these means, our framework can extract features directly and efficiently from the entire fMRI and be aware of implicit inter-individual differences. We have evaluated our framework on the ABIDE-I dataset with 10-fold cross-validation. The present model has achieved a mean classification accuracy of 85.95\% and a mean AUC of 0.92, which is better than the state-of-the-art methods.

Abstract (translated)

URL

https://arxiv.org/abs/2109.09129

PDF

https://arxiv.org/pdf/2109.09129.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot