Paper Reading AI Learner

Adversarial Training with Contrastive Learning in NLP

2021-09-19 07:23:45
Daniela N. Rim, DongNyeong Heo, Heeyoul Choi

Abstract

For years, adversarial training has been extensively studied in natural language processing (NLP) settings. The main goal is to make models robust so that similar inputs derive in semantically similar outcomes, which is not a trivial problem since there is no objective measure of semantic similarity in language. Previous works use an external pre-trained NLP model to tackle this challenge, introducing an extra training stage with huge memory consumption during training. However, the recent popular approach of contrastive learning in language processing hints a convenient way of obtaining such similarity restrictions. The main advantage of the contrastive learning approach is that it aims for similar data points to be mapped close to each other and further from different ones in the representation space. In this work, we propose adversarial training with contrastive learning (ATCL) to adversarially train a language processing task using the benefits of contrastive learning. The core idea is to make linear perturbations in the embedding space of the input via fast gradient methods (FGM) and train the model to keep the original and perturbed representations close via contrastive learning. In NLP experiments, we applied ATCL to language modeling and neural machine translation tasks. The results show not only an improvement in the quantitative (perplexity and BLEU) scores when compared to the baselines, but ATCL also achieves good qualitative results in the semantic level for both tasks without using a pre-trained model.

Abstract (translated)

URL

https://arxiv.org/abs/2109.09075

PDF

https://arxiv.org/pdf/2109.09075.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot