Paper Reading AI Learner

Inline Detection of Domain Generation Algorithms with Context-Sensitive Word Embeddings

2018-11-21 12:14:12
Joewie J. Koh, Barton Rhodes

Abstract

Domain generation algorithms (DGAs) are frequently employed by malware to generate domains used for connecting to command-and-control (C2) servers. Recent work in DGA detection leveraged deep learning architectures like convolutional neural networks (CNNs) and character-level long short-term memory networks (LSTMs) to classify domains. However, these classifiers perform poorly with wordlist-based DGA families, which generate domains by pseudorandomly concatenating dictionary words. We propose a novel approach that combines context-sensitive word embeddings with a simple fully-connected classifier to perform classification of domains based on word-level information. The word embeddings were pre-trained on a large unrelated corpus and left frozen during the training on domain data. The resulting small number of trainable parameters enabled extremely short training durations, while the transfer of language knowledge stored in the representations allowed for high-performing models with small training datasets. We show that this architecture reliably outperformed existing techniques on wordlist-based DGA families with just 30 DGA training examples and achieved state-of-the-art performance with around 100 DGA training examples, all while requiring an order of magnitude less time to train compared to current techniques. Of special note is the technique's performance on the matsnu DGA: the classifier attained a 89.5% detection rate with a 1:1,000 false positive rate (FPR) after training on only 30 examples of the DGA domains, and a 91.2% detection rate with a 1:10,000 FPR after 90 examples. Considering that some of these DGAs have wordlists of several hundred words, our results demonstrate that this technique does not rely on the classifier learning the DGA wordlists. Instead, the classifier is able to learn the semantic signatures of the wordlist-based DGA families.

Abstract (translated)

URL

https://arxiv.org/abs/1811.08705

PDF

https://arxiv.org/pdf/1811.08705.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot