Paper Reading AI Learner

Simplify Your Law: Using Information Theory to Deduplicate Legal Documents

2021-10-02 06:19:14
Corinna Coupette, Jyotsna Singh, Holger Spamann

Abstract

Textual redundancy is one of the main challenges to ensuring that legal texts remain comprehensible and maintainable. Drawing inspiration from the refactoring literature in software engineering, which has developed methods to expose and eliminate duplicated code, we introduce the duplicated phrase detection problem for legal texts and propose the Dupex algorithm to solve it. Leveraging the Minimum Description Length principle from information theory, Dupex identifies a set of duplicated phrases, called patterns, that together best compress a given input text. Through an extensive set of experiments on the Titles of the United States Code, we confirm that our algorithm works well in practice: Dupex will help you simplify your law.

Abstract (translated)

URL

https://arxiv.org/abs/2110.00735

PDF

https://arxiv.org/pdf/2110.00735.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot