Paper Reading AI Learner

Trident Pyramid Networks: The importance of processing at the feature pyramid level for better object detection

2021-10-08 09:59:59
Cédric Picron, Tinne Tuytelaars

Abstract

Feature pyramids have become ubiquitous in multi-scale computer vision tasks such as object detection. Based on their importance, we divide a computer vision network into three parts: a backbone (generating a feature pyramid), a core (refining the feature pyramid) and a head (generating the final output). Most existing networks operating on feature pyramids, named cores, are shallow and mostly focus on communication-based processing in the form of top-down and bottom-up operations. We present a new core architecture called Trident Pyramid Network (TPN), that allows for a deeper design and for a better balance between communication-based processing and self-processing. We show consistent improvements when using our TPN core on the COCO object detection benchmark, outperforming the popular BiFPN baseline by 1.5 AP. Additionally, we empirically show that it is more beneficial to put additional computation into the TPN core, rather than into the backbone, by outperforming a ResNet-101+FPN baseline with our ResNet-50+TPN network by 1.7 AP, while operating under similar computation budgets. This emphasizes the importance of performing computation at the feature pyramid level in modern-day object detection systems. Code will be released.

Abstract (translated)

URL

https://arxiv.org/abs/2110.04004

PDF

https://arxiv.org/pdf/2110.04004.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot