Paper Reading AI Learner

Similarity-preserving Image-image Domain Adaptation for Person Re-identification

2018-11-26 17:56:32
Weijian Deng, Liang Zheng, Qixiang Ye, Yi Yang, Jianbin Jiao

Abstract

This article studies the domain adaptation problem in person re-identification (re-ID) under a "learning via translation" framework, consisting of two components, 1) translating the labeled images from the source to the target domain in an unsupervised manner, 2) learning a re-ID model using the translated images. The objective is to preserve the underlying human identity information after image translation, so that translated images with labels are effective for feature learning on the target domain. To this end, we propose a similarity preserving generative adversarial network (SPGAN) and its end-to-end trainable version, eSPGAN. Both aiming at similarity preserving, SPGAN enforces this property by heuristic constraints, while eSPGAN does so by optimally facilitating the re-ID model learning. More specifically, SPGAN separately undertakes the two components in the "learning via translation" framework. It first preserves two types of unsupervised similarity, namely, self-similarity of an image before and after translation, and domain-dissimilarity of a translated source image and a target image. It then learns a re-ID model using existing networks. In comparison, eSPGAN seamlessly integrates image translation and re-ID model learning. During the end-to-end training of eSPGAN, re-ID learning guides image translation to preserve the underlying identity information of an image. Meanwhile, image translation improves re-ID learning by providing identity-preserving training samples of the target domain style. In the experiment, we show that identities of the fake images generated by SPGAN and eSPGAN are well preserved. Based on this, we report the new state-of-the-art domain adaptation results on two large-scale person re-ID datasets.

Abstract (translated)

URL

https://arxiv.org/abs/1811.10551

PDF

https://arxiv.org/pdf/1811.10551.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot