Paper Reading AI Learner

Color Counting for Fashion, Art, and Design

2021-10-13 12:42:15
Mohammed Al-Rawi

Abstract

Color modelling and extraction is an important topic in fashion, art, and design. Recommender systems, color-based retrieval, decorating, and fashion design can benefit from color extraction tools. Research has shown that modeling color so that it can be automatically analyzed and / or extracted is a difficult task. Unlike machines, color perception, although very subjective, is much simpler for humans. That being said, the first step in color modeling is to estimate the number of colors in the item / object. This is because color models can take advantage of the number of colors as the seed for better modelling, e.g., to make color extraction further deterministic. We aim in this work to develop and test models that can count the number of colors of clothing and other items. We propose a novel color counting method based on cumulative color histogram, which stands out among other methods. We compare the method we propose with other methods that utilize exhaustive color search that uses Gaussian Mixture Models (GMMs) and K-Means as bases for scoring the optimal number of colors, in addition to another method that relies on deep learning models. Unfortunately, the GMM, K-Means, and Deep Learning models all fail to accurately capture the number of colors. Our proposed method can provide the color baseline that can be used in AI-based fashion applications, and can also find applications in other areas, for example, interior design. To the best of our knowledge, this work is the first of its kind that addresses the problem of color-counting machine.

Abstract (translated)

URL

https://arxiv.org/abs/2110.06682

PDF

https://arxiv.org/pdf/2110.06682.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot