Paper Reading AI Learner

Leveraging redundancy in attention with Reuse Transformers

2021-10-13 16:08:02
Srinadh Bhojanapalli, Ayan Chakrabarti, Andreas Veit, Michal Lukasik, Himanshu Jain, Frederick Liu, Yin-Wen Chang, Sanjiv Kumar

Abstract

Pairwise dot product-based attention allows Transformers to exchange information between tokens in an input-dependent way, and is key to their success across diverse applications in language and vision. However, a typical Transformer model computes such pairwise attention scores repeatedly for the same sequence, in multiple heads in multiple layers. We systematically analyze the empirical similarity of these scores across heads and layers and find them to be considerably redundant, especially adjacent layers showing high similarity. Motivated by these findings, we propose a novel architecture that reuses attention scores computed in one layer in multiple subsequent layers. Experiments on a number of standard benchmarks show that reusing attention delivers performance equivalent to or better than standard transformers, while reducing both compute and memory usage.

Abstract (translated)

URL

https://arxiv.org/abs/2110.06821

PDF

https://arxiv.org/pdf/2110.06821.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot