Paper Reading AI Learner

Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments

2021-10-13 17:02:29
Yu Zhang, Qingrong Xia, Shilin Zhou, Yong Jiang, Zhenghua Li, Guohong Fu, Min Zhang

Abstract

Semantic role labeling is a fundamental yet challenging task in the NLP community. Recent works of SRL mainly fall into two lines:1) BIO-based and 2) span-based. Despite effectiveness, they share some intrinsic drawbacks of not explicitly considering internal argument structures, which may potentially hinder the model's expressiveness. To remedy this, we propose to reduce SRL to a dependency parsing task and regard the flat argument spans as latent subtrees. In particular, we equip our formulation with a novel span-constrained TreeCRF model to make tree structures span-aware, and further extend it to the second-order case. Experiments on CoNLL05 and CoNLL12 benchmarks reveal that the results of our methods outperform all previous works and achieve the state-of-the-art.

Abstract (translated)

URL

https://arxiv.org/abs/2110.06865

PDF

https://arxiv.org/pdf/2110.06865


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot