Paper Reading AI Learner

Learning to Solve Complex Tasks by Talking to Agents

2021-10-16 10:37:34
Tushar Khot, Kyle Richardson, Daniel Khashabi, Ashish Sabharwal

Abstract

Humans often solve complex problems by interacting (in natural language) with existing agents, such as AI assistants, that can solve simpler sub-tasks. These agents themselves can be powerful systems built using extensive resources and privately held data. In contrast, common NLP benchmarks aim for the development of self-sufficient models for every task. To address this gap and facilitate research towards ``green'' AI systems that build upon existing agents, we propose a new benchmark called CommaQA that contains three kinds of complex reasoning tasks that are designed to be solved by ``talking'' to four agents with different capabilities. We demonstrate that state-of-the-art black-box models, which are unable to leverage existing agents, struggle on CommaQA (exact match score only reaches 40pts) even when given access to the agents' internal knowledge and gold fact supervision. On the other hand, models using gold question decomposition supervision can indeed solve CommaQA to a high accuracy (over 96\% exact match) by learning to utilize the agents. Even these additional supervision models, however, do not solve our compositional generalization test set. Finally the end-goal of learning to solve complex tasks by communicating with existing agents \emph{without relying on any additional supervision} remains unsolved and we hope CommaQA serves as a novel benchmark to enable the development of such systems.

Abstract (translated)

URL

https://arxiv.org/abs/2110.08542

PDF

https://arxiv.org/pdf/2110.08542.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot