Paper Reading AI Learner

Medical Knowledge-Guided Deep Curriculum Learning for Elbow Fracture Diagnosis from X-Ray Images

2021-10-20 05:24:35
Jun Luo, Gene Kitamura, Emine Doganay, Dooman Arefan, Shandong Wu

Abstract

Elbow fractures are one of the most common fracture types. Diagnoses on elbow fractures often need the help of radiographic imaging to be read and analyzed by a specialized radiologist with years of training. Thanks to the recent advances of deep learning, a model that can classify and detect different types of bone fractures needs only hours of training and has shown promising results. However, most existing deep learning models are purely data-driven, lacking incorporation of known domain knowledge from human experts. In this work, we propose a novel deep learning method to diagnose elbow fracture from elbow X-ray images by integrating domain-specific medical knowledge into a curriculum learning framework. In our method, the training data are permutated by sampling without replacement at the beginning of each training epoch. The sampling probability of each training sample is guided by a scoring criterion constructed based on clinically known knowledge from human experts, where the scoring indicates the diagnosis difficultness of different elbow fracture subtypes. We also propose an algorithm that updates the sampling probabilities at each epoch, which is applicable to other sampling-based curriculum learning frameworks. We design an experiment with 1865 elbow X-ray images for a fracture/normal binary classification task and compare our proposed method to a baseline method and a previous method using multiple metrics. Our results show that the proposed method achieves the highest classification performance. Also, our proposed probability update algorithm boosts the performance of the previous method.

Abstract (translated)

URL

https://arxiv.org/abs/2110.10381

PDF

https://arxiv.org/pdf/2110.10381.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot