Paper Reading AI Learner

Perceptual Consistency in Video Segmentation

2021-10-24 08:08:49
Yizhe Zhang, Shubhankar Borse, Hong Cai, Ying Wang, Ning Bi, Xiaoyun Jiang, Fatih Porikli

Abstract

In this paper, we present a novel perceptual consistency perspective on video semantic segmentation, which can capture both temporal consistency and pixel-wise correctness. Given two nearby video frames, perceptual consistency measures how much the segmentation decisions agree with the pixel correspondences obtained via matching general perceptual features. More specifically, for each pixel in one frame, we find the most perceptually correlated pixel in the other frame. Our intuition is that such a pair of pixels are highly likely to belong to the same class. Next, we assess how much the segmentation agrees with such perceptual correspondences, based on which we derive the perceptual consistency of the segmentation maps across these two frames. Utilizing perceptual consistency, we can evaluate the temporal consistency of video segmentation by measuring the perceptual consistency over consecutive pairs of segmentation maps in a video. Furthermore, given a sparsely labeled test video, perceptual consistency can be utilized to aid with predicting the pixel-wise correctness of the segmentation on an unlabeled frame. More specifically, by measuring the perceptual consistency between the predicted segmentation and the available ground truth on a nearby frame and combining it with the segmentation confidence, we can accurately assess the classification correctness on each pixel. Our experiments show that the proposed perceptual consistency can more accurately evaluate the temporal consistency of video segmentation as compared to flow-based measures. Furthermore, it can help more confidently predict segmentation accuracy on unlabeled test frames, as compared to using classification confidence alone. Finally, our proposed measure can be used as a regularizer during the training of segmentation models, which leads to more temporally consistent video segmentation while maintaining accuracy.

Abstract (translated)

URL

https://arxiv.org/abs/2110.12385

PDF

https://arxiv.org/pdf/2110.12385.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot