Paper Reading AI Learner

A Unified View of cGANs with and without Classifiers

2021-11-01 15:36:33
Si-An Chen, Chun-Liang Li, Hsuan-Tien Lin

Abstract

Conditional Generative Adversarial Networks (cGANs) are implicit generative models which allow to sample from class-conditional distributions. Existing cGANs are based on a wide range of different discriminator designs and training objectives. One popular design in earlier works is to include a classifier during training with the assumption that good classifiers can help eliminate samples generated with wrong classes. Nevertheless, including classifiers in cGANs often comes with a side effect of only generating easy-to-classify samples. Recently, some representative cGANs avoid the shortcoming and reach state-of-the-art performance without having classifiers. Somehow it remains unanswered whether the classifiers can be resurrected to design better cGANs. In this work, we demonstrate that classifiers can be properly leveraged to improve cGANs. We start by using the decomposition of the joint probability distribution to connect the goals of cGANs and classification as a unified framework. The framework, along with a classic energy model to parameterize distributions, justifies the use of classifiers for cGANs in a principled manner. It explains several popular cGAN variants, such as ACGAN, ProjGAN, and ContraGAN, as special cases with different levels of approximations, which provides a unified view and brings new insights to understanding cGANs. Experimental results demonstrate that the design inspired by the proposed framework outperforms state-of-the-art cGANs on multiple benchmark datasets, especially on the most challenging ImageNet. The code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2111.01035

PDF

https://arxiv.org/pdf/2111.01035.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot