Paper Reading AI Learner

ProSTformer: Pre-trained Progressive Space-Time Self-attention Model for Traffic Flow Forecasting

2021-11-03 12:20:08
Xiao Yan, Xianghua Gan, Jingjing Tang, Rui Wang

Abstract

Traffic flow forecasting is essential and challenging to intelligent city management and public safety. Recent studies have shown the potential of convolution-free Transformer approach to extract the dynamic dependencies among complex influencing factors. However, two issues prevent the approach from being effectively applied in traffic flow forecasting. First, it ignores the spatiotemporal structure of the traffic flow videos. Second, for a long sequence, it is hard to focus on crucial attention due to the quadratic times dot-product computation. To address the two issues, we first factorize the dependencies and then design a progressive space-time self-attention mechanism named ProSTformer. It has two distinctive characteristics: (1) corresponding to the factorization, the self-attention mechanism progressively focuses on spatial dependence from local to global regions, on temporal dependence from inside to outside fragment (i.e., closeness, period, and trend), and finally on external dependence such as weather, temperature, and day-of-week; (2) by incorporating the spatiotemporal structure into the self-attention mechanism, each block in ProSTformer highlights the unique dependence by aggregating the regions with spatiotemporal positions to significantly decrease the computation. We evaluate ProSTformer on two traffic datasets, and each dataset includes three separate datasets with big, medium, and small scales. Despite the radically different design compared to the convolutional architectures for traffic flow forecasting, ProSTformer performs better or the same on the big scale datasets than six state-of-the-art baseline methods by RMSE. When pre-trained on the big scale datasets and transferred to the medium and small scale datasets, ProSTformer achieves a significant enhancement and behaves best.

Abstract (translated)

URL

https://arxiv.org/abs/2111.03459

PDF

https://arxiv.org/pdf/2111.03459.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot