Robotics, autonomous driving, augmented reality, and many embodied computer vision applications must quickly react to user-defined events unfolding in real time. We address this setting by proposing a novel task for multimodal video understanding-Streaming Detection of Queried Event Start (SDQES). The goal of SDQES is to identify the beginning of a complex event as described by a natural language query, with high accuracy and low latency. We introduce a new benchmark based on the Ego4D dataset, as well as new task-specific metrics to study streaming multimodal detection of diverse events in an egocentric video setting. Inspired by parameter-efficient fine-tuning methods in NLP and for video tasks, we propose adapter-based baselines that enable image-to-video transfer learning, allowing for efficient online video modeling. We evaluate three vision-language backbones and three adapter architectures on both short-clip and untrimmed video settings.
https://arxiv.org/abs/2412.03567
Large Multimodal Models (LMMs) have made significant breakthroughs with the advancement of instruction tuning. However, while existing models can understand images and videos at a holistic level, they still struggle with instance-level understanding that requires a more nuanced comprehension and alignment. Instance-level understanding is crucial, as it focuses on the specific elements that we are most interested in. Excitingly, existing works find that the state-of-the-art LMMs exhibit strong instance understanding capabilities when provided with explicit visual cues. Motivated by this, we introduce an automated annotation pipeline assisted by GPT-4o to extract instance-level information from images and videos through explicit visual prompting for instance guidance. Building upon this pipeline, we proposed Inst-IT, a solution to enhance LMMs in Instance understanding via explicit visual prompt Instruction Tuning. Inst-IT consists of a benchmark to diagnose multimodal instance-level understanding, a large-scale instruction-tuning dataset, and a continuous instruction-tuning training paradigm to effectively enhance spatial-temporal instance understanding capabilities of existing LMMs. Experimental results show that, with the boost of Inst-IT, our models not only achieve outstanding performance on Inst-IT Bench but also demonstrate significant improvements across various generic image and video understanding benchmarks. This highlights that our dataset not only boosts instance-level understanding but also strengthens the overall capabilities of generic image and video comprehension.
https://arxiv.org/abs/2412.03565
CLIP has shown impressive results in aligning images and texts at scale. However, its ability to capture detailed visual features remains limited because CLIP matches images and texts at a global level. To address this issue, we propose FLAIR, Fine-grained Language-informed Image Representations, an approach that utilizes long and detailed image descriptions to learn localized image embeddings. By sampling diverse sub-captions that describe fine-grained details about an image, we train our vision-language model to produce not only global embeddings but also text-specific image representations. Our model introduces text-conditioned attention pooling on top of local image tokens to produce fine-grained image representations that excel at retrieving detailed image content. We achieve state-of-the-art performance on both, existing multimodal retrieval benchmarks, as well as, our newly introduced fine-grained retrieval task which evaluates vision-language models' ability to retrieve partial image content. Furthermore, our experiments demonstrate the effectiveness of FLAIR trained on 30M image-text pairs in capturing fine-grained visual information, including zero-shot semantic segmentation, outperforming models trained on billions of pairs. Code is available at this https URL .
https://arxiv.org/abs/2412.03561
PaliGemma 2 is an upgrade of the PaliGemma open Vision-Language Model (VLM) based on the Gemma 2 family of language models. We combine the SigLIP-So400m vision encoder that was also used by PaliGemma with the whole range of Gemma 2 models, from the 2B one all the way up to the 27B model. We train these models at three resolutions (224px, 448px, and 896px) in multiple stages to equip them with broad knowledge for transfer via fine-tuning. The resulting family of base models covering different model sizes and resolutions allows us to investigate factors impacting transfer performance (such as learning rate) and to analyze the interplay between the type of task, model size, and resolution. We further increase the number and breadth of transfer tasks beyond the scope of PaliGemma including different OCR-related tasks such as table structure recognition, molecular structure recognition, music score recognition, as well as long fine-grained captioning and radiography report generation, on which PaliGemma 2 obtains state-of-the-art results.
https://arxiv.org/abs/2412.03555
Multimodal language models (MLMs) still face challenges in fundamental visual perception tasks where specialized models excel. Tasks requiring reasoning about 3D structures benefit from depth estimation, and reasoning about 2D object instances benefits from object detection. Yet, MLMs can not produce intermediate depth or boxes to reason over. Finetuning MLMs on relevant data doesn't generalize well and outsourcing computation to specialized vision tools is too compute-intensive and memory-inefficient. To address this, we introduce Perception Tokens, intrinsic image representations designed to assist reasoning tasks where language is insufficient. Perception tokens act as auxiliary reasoning tokens, akin to chain-of-thought prompts in language models. For example, in a depth-related task, an MLM augmented with perception tokens can reason by generating a depth map as tokens, enabling it to solve the problem effectively. We propose AURORA, a training method that augments MLMs with perception tokens for improved reasoning over visual inputs. AURORA leverages a VQVAE to transform intermediate image representations, such as depth maps into a tokenized format and bounding box tokens, which is then used in a multi-task training framework. AURORA achieves notable improvements across counting benchmarks: +10.8% on BLINK, +11.3% on CVBench, and +8.3% on SEED-Bench, outperforming finetuning approaches in generalization across datasets. It also improves on relative depth: over +6% on BLINK. With perception tokens, AURORA expands the scope of MLMs beyond language-based reasoning, paving the way for more effective visual reasoning capabilities.
https://arxiv.org/abs/2412.03548
Recently, CLIP has emerged as a valuable model for aligning image and text information in multi-modal scenarios. However, researchers have observed limitations in the ability of CLIP's text and image encoders to extract detailed knowledge from caption-image pairs. In response, this paper introduces KKLIP, a novel approach designed to enhance the quality of CLIP by incorporating a new knowledge distillation (KD) method derived from Llama 2. Our method comprises three objectives: Text Embedding Distillation, Concept Learning, and Contrastive Learning. Firstly, Text Embedding Distillation involves training the KKLIP text encoder to emulate the teacher model, Llama 2. Secondly, Concept Learning assigns a soft concept label to each caption-image pair through offline k-means clustering of text information from Llama 2, allowing KKLIP to learn from these soft concept labels. Finally, Contrastive Learning harmonizes text and image embeddings. Our experimental results demonstrate that KKLIP enhances the quality of both text and image encoders.
https://arxiv.org/abs/2412.03513
Large language models (LLMs) have enabled the creation of multi-modal LLMs that exhibit strong comprehension of visual data such as images and videos. However, these models usually rely on extensive visual tokens from visual encoders, leading to high computational demands, which limits their applicability in resource-constrained environments and for long-context tasks. In this work, we propose a training-free adaptive inference method for multi-modal LLMs that can accommodate a broad range of efficiency requirements with a minimum performance drop. Our method consists of a) iterative token merging based on embedding similarity before LLMs, and b) progressive token pruning within LLM layers based on multi-modal importance. With a minimalist design, our method can be applied to both video and image LLMs. Extensive experiments on diverse video and image benchmarks demonstrate that, our method substantially reduces computation load (e.g., a $\textbf{7-fold}$ reduction in FLOPs) while preserving the performance of video and image LLMs. Further, under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding (e.g., $\textbf{+4.6}$ on MLVU). Additionally, our in-depth analysis provides insights into token redundancy and LLM layer behaviors, offering guidance for future research in designing efficient multi-modal LLMs. Our code will be available at this https URL.
https://arxiv.org/abs/2412.03248
Uncertainty quantification in text-to-image (T2I) generative models is crucial for understanding model behavior and improving output reliability. In this paper, we are the first to quantify and evaluate the uncertainty of T2I models with respect to the prompt. Alongside adapting existing approaches designed to measure uncertainty in the image space, we also introduce Prompt-based UNCertainty Estimation for T2I models (PUNC), a novel method leveraging Large Vision-Language Models (LVLMs) to better address uncertainties arising from the semantics of the prompt and generated images. PUNC utilizes a LVLM to caption a generated image, and then compares the caption with the original prompt in the more semantically meaningful text space. PUNC also enables the disentanglement of both aleatoric and epistemic uncertainties via precision and recall, which image-space approaches are unable to do. Extensive experiments demonstrate that PUNC outperforms state-of-the-art uncertainty estimation techniques across various settings. Uncertainty quantification in text-to-image generation models can be used on various applications including bias detection, copyright protection, and OOD detection. We also introduce a comprehensive dataset of text prompts and generation pairs to foster further research in uncertainty quantification for generative models. Our findings illustrate that PUNC not only achieves competitive performance but also enables novel applications in evaluating and improving the trustworthiness of text-to-image models.
https://arxiv.org/abs/2412.03178
Text serves as the key control signal in video generation due to its narrative nature. To render text descriptions into video clips, current video diffusion models borrow features from text encoders yet struggle with limited text comprehension. The recent success of large language models (LLMs) showcases the power of decoder-only transformers, which offers three clear benefits for text-to-video (T2V) generation, namely, precise text understanding resulting from the superior scalability, imagination beyond the input text enabled by next token prediction, and flexibility to prioritize user interests through instruction tuning. Nevertheless, the feature distribution gap emerging from the two different text modeling paradigms hinders the direct use of LLMs in established T2V models. This work addresses this challenge with Mimir, an end-to-end training framework featuring a carefully tailored token fuser to harmonize the outputs from text encoders and LLMs. Such a design allows the T2V model to fully leverage learned video priors while capitalizing on the text-related capability of LLMs. Extensive quantitative and qualitative results demonstrate the effectiveness of Mimir in generating high-quality videos with excellent text comprehension, especially when processing short captions and managing shifting motions. Project page: this https URL
https://arxiv.org/abs/2412.03085
This paper introduces TemporalVLM, a video large language model capable of effective temporal reasoning and fine-grained understanding in long videos. At the core, our approach includes a visual encoder for mapping a long-term input video into features which are time-aware and contain both local and global cues. In particular, it first divides the input video into short-term clips, which are jointly encoded with their timestamps into time-sensitive local features. Next, the local features are passed through a bidirectional long short-term memory module for global feature aggregation. The extracted time-aware and multi-level features are important for accurate temporal reasoning and fine-grained understanding in long videos. Moreover, to facilitate the evaluation of TemporalVLM, we present a large-scale long video dataset of industry assembly processes, namely IndustryASM, which consists of videos recorded on factory floors with actions and timestamps annotated by industrial engineers for time and motion studies and temporal action segmentation evaluation. Finally, extensive experiments on datasets of long videos, including TimeIT and IndustryASM, show that TemporalVLM achieves superior performance than previous methods across temporal reasoning and fine-grained understanding tasks, namely dense video captioning, temporal video grounding, video highlight detection, and temporal action segmentation.
https://arxiv.org/abs/2412.02930
This paper analyzes the performance of Small Language Models (SLMs) and Vision Language Models (VLMs) and evaluates the trade-off between model performance and carbon emissions across 4 essential tasks: Image Captioning, Visual Question Answering (VQA), Dialogue Summarization and Text-to-SQL conversion. Various SLMs and VLMs belonging to the Qwen and LLaMA architecture family are chosen and variants based on model size in terms of the number of parameters, quantization level and fine-tuning parameters are evaluated. The model variant's performance and carbon emissions are calculated. To quantify the trade-off between model performance and carbon emissions, we introduce a novel metric called CEGI (Carbon Efficient Gain Index). This metric represents the carbon emission per unit percentage gain per million trainable parameters . This metric provides a normalized measure to compare model's efficiency in terms of performance improvement relative to their environmental cost. The experiment's outcome demonstrates that fine-tuning SLMs and VLMs can achieve performance levels comparable to Large Language Models (LLMs) while producing significantly less carbon emissions. Our findings suggest that the marginal gains in accuracy from larger models do not justify the substantial increase in carbon emissions. Leveraging lower-bit quantization levels, the proposed metric further enhances energy efficiency without compromising performance. This study highlights balancing high performance and environmental sustainability. It offers a valuable metric for selecting models suitable for environmentally-friendly AI development.
https://arxiv.org/abs/2412.02602
Temporal image analysis in remote sensing has traditionally centered on change detection, which identifies regions of change between images captured at different times. However, change detection remains limited by its focus on visual-level interpretation, often lacking contextual or descriptive information. The rise of Vision-Language Models (VLMs) has introduced a new dimension to remote sensing temporal image analysis by integrating visual information with natural language, creating an avenue for advanced interpretation of temporal image changes. Remote Sensing Temporal VLMs (RSTVLMs) allow for dynamic interactions, generating descriptive captions, answering questions, and providing a richer semantic understanding of temporal images. This temporal vision-language capability is particularly valuable for complex remote sensing applications, where higher-level insights are crucial. This paper comprehensively reviews the progress of RSTVLM research, with a focus on the latest VLM applications for temporal image analysis. We categorize and discuss core methodologies, datasets, and metrics, highlight recent advances in temporal vision-language tasks, and outline key challenges and future directions for research in this emerging field. This survey fills a critical gap in the literature by providing an integrated overview of RSTVLM, offering a foundation for further advancements in remote sensing temporal image understanding. We will keep tracing related works at \url{this https URL}
https://arxiv.org/abs/2412.02573
Building LiDAR generative models holds promise as powerful data priors for restoration, scene manipulation, and scalable simulation in autonomous mobile robots. In recent years, approaches using diffusion models have emerged, significantly improving training stability and generation quality. Despite the success of diffusion models, generating high-quality samples requires numerous iterations of running neural networks, and the increasing computational cost can pose a barrier to robotics applications. To address this challenge, this paper presents R2Flow, a fast and high-fidelity generative model for LiDAR data. Our method is based on rectified flows that learn straight trajectories, simulating data generation with much fewer sampling steps against diffusion models. We also propose a efficient Transformer-based model architecture for processing the image representation of LiDAR range and reflectance measurements. Our experiments on the unconditional generation of the KITTI-360 dataset demonstrate the effectiveness of our approach in terms of both efficiency and quality.
https://arxiv.org/abs/2412.02241
State-of-the-art Style Transfer methods often leverage pre-trained encoders optimized for discriminative tasks, which may not be ideal for image synthesis. This can result in significant artifacts and loss of photorealism. Motivated by the ability of multiscale geometric image representations to capture fine-grained details and global structure, we propose GIST: Geometric-based Image Style Transfer, a novel Style Transfer technique that exploits the geometric properties of content and style images. GIST replaces the standard Neural Style Transfer autoencoding framework with a multiscale image expansion, preserving scene details without the need for post-processing or training. Our method matches multiresolution and multidirectional representations such as Wavelets and Contourlets by solving an optimal transport problem, leading to an efficient texture transferring. Experiments show that GIST is on-par or outperforms recent photorealistic Style Transfer approaches while significantly reducing the processing time with no model training.
https://arxiv.org/abs/2412.02214
Recent advancements in video large multimodal models (LMMs) have significantly improved their video understanding and reasoning capabilities. However, their performance drops on out-of-distribution (OOD) tasks that are underrepresented in training data. Traditional methods like fine-tuning on OOD datasets are impractical due to high computational costs. While In-context learning (ICL) with demonstration examples has shown promising generalization performance in language tasks and image-language tasks without fine-tuning, applying ICL to video-language tasks faces challenges due to the limited context length in Video LMMs, as videos require longer token lengths. To address these issues, we propose VideoICL, a novel video in-context learning framework for OOD tasks that introduces a similarity-based relevant example selection strategy and a confidence-based iterative inference approach. This allows to select the most relevant examples and rank them based on similarity, to be used for inference. If the generated response has low confidence, our framework selects new examples and performs inference again, iteratively refining the results until a high-confidence response is obtained. This approach improves OOD video understanding performance by extending effective context length without incurring high costs. The experimental results on multiple benchmarks demonstrate significant performance gains, especially in domain-specific scenarios, laying the groundwork for broader video comprehension applications. Code will be released at this https URL
https://arxiv.org/abs/2412.02186
While image captioning provides isolated descriptions for individual images, and video captioning offers one single narrative for an entire video clip, our work explores an important middle ground: progress-aware video captioning at the frame level. This novel task aims to generate temporally fine-grained captions that not only accurately describe each frame but also capture the subtle progression of actions throughout a video sequence. Despite the strong capabilities of existing leading vision language models, they often struggle to discern the nuances of frame-wise differences. To address this, we propose ProgressCaptioner, a captioning model designed to capture the fine-grained temporal dynamics within an action sequence. Alongside, we develop the FrameCap dataset to support training and the FrameCapEval benchmark to assess caption quality. The results demonstrate that ProgressCaptioner significantly surpasses leading captioning models, producing precise captions that accurately capture action progression and set a new standard for temporal precision in video captioning. Finally, we showcase practical applications of our approach, specifically in aiding keyframe selection and advancing video understanding, highlighting its broad utility.
https://arxiv.org/abs/2412.02071
As a globally celebrated sport, soccer has attracted widespread interest from fans over the world. This paper aims to develop a comprehensive multi-modal framework for soccer video understanding. Specifically, we make the following contributions in this paper: (i) we introduce SoccerReplay-1988, the largest multi-modal soccer dataset to date, featuring videos and detailed annotations from 1,988 complete matches, with an automated annotation pipeline; (ii) we present the first visual-language foundation model in the soccer domain, MatchVision, which leverages spatiotemporal information across soccer videos and excels in various downstream tasks; (iii) we conduct extensive experiments and ablation studies on action classification, commentary generation, and multi-view foul recognition, and demonstrate state-of-the-art performance on all of them, substantially outperforming existing models, which has demonstrated the superiority of our proposed data and model. We believe that this work will offer a standard paradigm for sports understanding research. The code and model will be publicly available for reproduction.
https://arxiv.org/abs/2412.01820
Recent advancements in video-based large language models (Video LLMs) have witnessed the emergence of diverse capabilities to reason and interpret dynamic visual content. Among them, gameplay videos stand out as a distinctive data source, often containing glitches that defy physics commonsense. This characteristic renders them an effective benchmark for assessing the under-explored capability of physical commonsense understanding in video LLMs. In this paper, we propose PhysGame as a pioneering benchmark to evaluate physical commonsense violations in gameplay videos. PhysGame comprises 880 videos associated with glitches spanning four fundamental domains (i.e., mechanics, kinematics, optics, and material properties) and across 12 distinct physical commonsense. Through extensively evaluating various state-ofthe-art video LLMs, our findings reveal that the performance of current open-source video LLMs significantly lags behind that of proprietary counterparts. To bridge this gap, we curate an instruction tuning dataset PhysInstruct with 140,057 question-answering pairs to facilitate physical commonsense learning. In addition, we also propose a preference optimization dataset PhysDPO with 34,358 training pairs, where the dis-preferred responses are generated conditioned on misleading titles (i.e., meta information hacking), fewer frames (i.e., temporal hacking) and lower spatial resolutions (i.e., spatial hacking). Based on the suite of datasets, we propose PhysVLM as a physical knowledge-enhanced video LLM. Extensive experiments on both physical-oriented benchmark PhysGame and general video understanding benchmarks demonstrate the state-ofthe-art performance of PhysVLM.
https://arxiv.org/abs/2412.01800
Long video understanding presents challenges due to the inherent high computational complexity and redundant temporal information. An effective representation for long videos must process such redundancy efficiently while preserving essential contents for downstream tasks. This paper introduces SEmantic Attention Learning (SEAL), a novel unified representation for long videos. To reduce computational complexity, long videos are decomposed into three distinct types of semantic entities: scenes, objects, and actions, allowing models to operate on a handful of entities rather than a large number of frames or pixels. To further address redundancy, we propose an attention learning module that balances token relevance with diversity formulated as a subset selection optimization problem. Our representation is versatile, enabling applications across various long video understanding tasks. Extensive experiments show that SEAL significantly outperforms state-of-the-art methods in video question answering and temporal grounding tasks and benchmarks including LVBench, MovieChat-1K, and Ego4D.
https://arxiv.org/abs/2412.01798
Self-supervised learning (SSL) methods have emerged as strong visual representation learners by training an image encoder to maximize similarity between features of different views of the same image. To perform this view-invariance task, current SSL algorithms rely on hand-crafted augmentations such as random cropping and color jittering to create multiple views of an image. Recently, generative diffusion models have been shown to improve SSL by providing a wider range of data augmentations. However, these diffusion models require pre-training on large-scale image-text datasets, which might not be available for many specialized domains like histopathology. In this work, we introduce Gen-SIS, a diffusion-based augmentation technique trained exclusively on unlabeled image data, eliminating any reliance on external sources of supervision such as text captions. We first train an initial SSL encoder on a dataset using only hand-crafted augmentations. We then train a diffusion model conditioned on embeddings from that SSL encoder. Following training, given an embedding of the source image, this diffusion model can synthesize its diverse views. We show that these `self-augmentations', i.e. generative augmentations based on the vanilla SSL encoder embeddings, facilitate the training of a stronger SSL encoder. Furthermore, based on the ability to interpolate between images in the encoder latent space, we introduce the novel pretext task of disentangling the two source images of an interpolated synthetic image. We validate Gen-SIS's effectiveness by demonstrating performance improvements across various downstream tasks in both natural images, which are generally object-centric, as well as digital histopathology images, which are typically context-based.
https://arxiv.org/abs/2412.01672