This paper introduces the counter-intuitive generalization results of overfitting pre-trained large language models (LLMs) on very small datasets. In the setting of open-ended text generation, it is well-documented that LLMs tend to generate repetitive and dull sequences, a phenomenon that is especially apparent when generating using greedy decoding. This issue persists even with state-of-the-art LLMs containing billions of parameters, trained via next-token prediction on large datasets. We find that by further fine-tuning these models to achieve a near-zero training loss on a small set of samples -- a process we refer to as hyperfitting -- the long-sequence generative capabilities are greatly enhanced. Greedy decoding with these Hyperfitted models even outperform Top-P sampling over long-sequences, both in terms of diversity and human preferences. This phenomenon extends to LLMs of various sizes, different domains, and even autoregressive image generation. We further find this phenomena to be distinctly different from that of Grokking and double descent. Surprisingly, our experiments indicate that hyperfitted models rarely fall into repeating sequences they were trained on, and even explicitly blocking these sequences results in high-quality output. All hyperfitted models produce extremely low-entropy predictions, often allocating nearly all probability to a single token.
https://arxiv.org/abs/2412.04318
The rapid development of Artificial Intelligence (AI) has led to the creation of powerful text generation models, such as large language models (LLMs), which are widely used for diverse applications. However, concerns surrounding AI-generated content, including issues of originality, bias, misinformation, and accountability, have become increasingly prominent. This paper offers a comprehensive overview of AI text generators (AITGs), focusing on their evolution, capabilities, and ethical implications. This paper also introduces Retrieval-Augmented Generation (RAG), a recent approach that improves the contextual relevance and accuracy of text generation by integrating dynamic information retrieval. RAG addresses key limitations of traditional models, including their reliance on static knowledge and potential inaccuracies in handling real-world data. Additionally, the paper reviews detection tools that help differentiate AI-generated text from human-written content and discusses the ethical challenges these technologies pose. The paper explores future directions for improving detection accuracy, supporting ethical AI development, and increasing accessibility. The paper contributes to a more responsible and reliable use of AI in content creation through these discussions.
https://arxiv.org/abs/2412.03933
The design space of discrete-space diffusion or flow generative models are significantly less well-understood than their continuous-space counterparts, with many works focusing only on a simple masked construction. In this work, we aim to take a holistic approach to the construction of discrete generative models based on continuous-time Markov chains, and for the first time, allow the use of arbitrary discrete probability paths, or colloquially, corruption processes. Through the lens of optimizing the symmetric kinetic energy, we propose velocity formulas that can be applied to any given probability path, completely decoupling the probability and velocity, and giving the user the freedom to specify any desirable probability path based on expert knowledge specific to the data domain. Furthermore, we find that a special construction of mixture probability paths optimizes the symmetric kinetic energy for the discrete case. We empirically validate the usefulness of this new design space across multiple modalities: text generation, inorganic material generation, and image generation. We find that we can outperform the mask construction even in text with kinetic-optimal mixture paths, while we can make use of domain-specific constructions of the probability path over the visual domain.
https://arxiv.org/abs/2412.03487
Prefix circuits are fundamental components in digital adders, widely used in digital systems due to their efficiency in calculating carry signals. Synthesizing prefix circuits with minimized area and delay is crucial for enhancing the performance of modern computing systems. Recently, large language models (LLMs) have demonstrated a surprising ability to perform text generation tasks. We propose PrefixLLM, that leverages LLMs for prefix circuit synthesis. PrefixLLM transforms the prefix circuit synthesis task into a structured text generation problem, termed the Structured Prefix Circuit Representation (SPCR), and introduces an iterative framework to automatically and accurately generate valid SPCRs. We further present a design space exploration (DSE) framework that uses LLMs to iteratively search for area and delay optimized prefix circuits. Compared to state-of-the-art, PrefixLLM can reduce the area by 3.70% under the same delay constraint. This work highlights the use of LLMs in the synthesis of arithmetic circuits, which can be transformed into the structured text generation.
https://arxiv.org/abs/2412.02594
Programmable Logic Controllers (PLCs) are microcomputers essential for automating factory operations. Structured Text (ST), a high-level language adhering to the IEC 61131-3 standard, is pivotal for PLCs due to its ability to express logic succinctly and to seamlessly integrate with other languages within the same standard. However, vendors develop their own customized versions of ST, and the lack of comprehensive and standardized documentation for the full semantics of ST has contributed to inconsistencies in how the language is implemented. Consequently, the steep learning curve associated with ST, combined with ever-evolving industrial requirements, presents significant challenges for developers. In response to these issues, we present AutoPLC, an LLM-based approach designed to automate the generation of vendor-specific ST code. To facilitate effective code generation, we first built a comprehensive knowledge base, including Rq2ST Case Library (requirements and corresponding implementations) and Instruction libraries. Then we developed a retrieval module to incorporate the domain-specific knowledge by identifying pertinent cases and instructions, guiding the LLM to generate code that meets the requirements. In order to verify and improve the quality of the generated code, we designed an adaptable code checker. If errors are detected, we initiate an iterative self-improvement process to instruct the LLM to revise the generated code. We evaluate AutoPLC's performance against seven state-of-the-art baselines using three benchmarks, one for open-source basic ST and two for commercial Structured Control Language (SCL) from Siemens. The results show that our approach consistently achieves superior performance across all benchmarks. Ablation study emphasizes the significance of our modules. Further manual analysis confirm the practical utility of the ST code generated by AutoPLC.
https://arxiv.org/abs/2412.02410
Language models based on deep neural networks are vulnerable to textual adversarial attacks. While rich-resource languages like English are receiving focused attention, Tibetan, a cross-border language, is gradually being studied due to its abundant ancient literature and critical language strategy. Currently, there are several Tibetan adversarial text generation methods, but they do not fully consider the textual features of Tibetan script and overestimate the quality of generated adversarial texts. To address this issue, we propose a novel Tibetan adversarial text generation method called TSCheater, which considers the characteristic of Tibetan encoding and the feature that visually similar syllables have similar semantics. This method can also be transferred to other abugidas, such as Devanagari script. We utilize a self-constructed Tibetan syllable visual similarity database called TSVSDB to generate substitution candidates and adopt a greedy algorithm-based scoring mechanism to determine substitution order. After that, we conduct the method on eight victim language models. Experimentally, TSCheater outperforms existing methods in attack effectiveness, perturbation magnitude, semantic similarity, visual similarity, and human acceptance. Finally, we construct the first Tibetan adversarial robustness evaluation benchmark called AdvTS, which is generated by existing methods and proofread by humans.
https://arxiv.org/abs/2412.02371
The increasing context window size in Large Language Models (LLMs), such as the GPT and LLaMA series, has improved their ability to tackle complex, long-text tasks, but at the cost of inference efficiency, particularly regarding memory and computational complexity. Existing methods, including selective token retention and window-based attention, improve efficiency but risk discarding important tokens needed for future text generation. In this paper, we propose an approach that enhances LLM efficiency without token loss by reducing the memory and computational load of less important tokens, rather than discarding this http URL address two challenges: 1) investigating the distribution of important tokens in the context, discovering recent tokens are more important than distant tokens in context, and 2) optimizing resources for distant tokens by sharing attention scores across layers. The experiments show that our method saves $35\%$ KV cache without compromising the performance.
https://arxiv.org/abs/2412.02252
The rapid development of Artificial Intelligence (AI) has revolutionized numerous fields, with large language models (LLMs) and computer vision (CV) systems driving advancements in natural language understanding and visual processing, respectively. The convergence of these technologies has catalyzed the rise of multimodal AI, enabling richer, cross-modal understanding that spans text, vision, audio, and video modalities. Multimodal large language models (MLLMs), in particular, have emerged as a powerful framework, demonstrating impressive capabilities in tasks like image-text generation, visual question answering, and cross-modal retrieval. Despite these advancements, the complexity and scale of MLLMs introduce significant challenges in interpretability and explainability, essential for establishing transparency, trustworthiness, and reliability in high-stakes applications. This paper provides a comprehensive survey on the interpretability and explainability of MLLMs, proposing a novel framework that categorizes existing research across three perspectives: (I) Data, (II) Model, (III) Training \& Inference. We systematically analyze interpretability from token-level to embedding-level representations, assess approaches related to both architecture analysis and design, and explore training and inference strategies that enhance transparency. By comparing various methodologies, we identify their strengths and limitations and propose future research directions to address unresolved challenges in multimodal explainability. This survey offers a foundational resource for advancing interpretability and transparency in MLLMs, guiding researchers and practitioners toward developing more accountable and robust multimodal AI systems.
https://arxiv.org/abs/2412.02104
In-context generation is a key component of large language models' (LLMs) open-task generalization capability. By leveraging a few examples as context, LLMs can perform both in-domain and out-of-domain tasks. Recent advancements in auto-regressive vision-language models (VLMs) built upon LLMs have showcased impressive performance in text-to-image generation. However, the potential of in-context learning for general image generation tasks remains largely unexplored. To address this, we introduce X-Prompt, a purely auto-regressive large-vision language model designed to deliver competitive performance across a wide range of both seen and unseen image generation tasks, all within a unified in-context learning framework. X-Prompt incorporates a specialized design that efficiently compresses valuable features from in-context examples, supporting longer in-context token sequences and improving its ability to generalize to unseen tasks. A unified training task for both text and image prediction enables X-Prompt to handle general image generation with enhanced task awareness from in-context examples. Extensive experiments validate the model's performance across diverse seen image generation tasks and its capacity to generalize to previously unseen tasks.
https://arxiv.org/abs/2412.01824
We introduce OmniFlow, a novel generative model designed for any-to-any generation tasks such as text-to-image, text-to-audio, and audio-to-image synthesis. OmniFlow advances the rectified flow (RF) framework used in text-to-image models to handle the joint distribution of multiple modalities. It outperforms previous any-to-any models on a wide range of tasks, such as text-to-image and text-to-audio synthesis. Our work offers three key contributions: First, we extend RF to a multi-modal setting and introduce a novel guidance mechanism, enabling users to flexibly control the alignment between different modalities in the generated outputs. Second, we propose a novel architecture that extends the text-to-image MMDiT architecture of Stable Diffusion 3 and enables audio and text generation. The extended modules can be efficiently pretrained individually and merged with the vanilla text-to-image MMDiT for fine-tuning. Lastly, we conduct a comprehensive study on the design choices of rectified flow transformers for large-scale audio and text generation, providing valuable insights into optimizing performance across diverse modalities. The Code will be available at this https URL.
https://arxiv.org/abs/2412.01169
Multimodal Large Language Models (MLLMs) have made significant strides in visual understanding and generation tasks. However, generating interleaved image-text content remains a challenge, which requires integrated multimodal understanding and generation abilities. While the progress in unified models offers new solutions, existing benchmarks are insufficient for evaluating these methods due to data size and diversity limitations. To bridge this gap, we introduce GATE OpenING (OpenING), a comprehensive benchmark comprising 5,400 high-quality human-annotated instances across 56 real-world tasks. OpenING covers diverse daily scenarios such as travel guide, design, and brainstorming, offering a robust platform for challenging interleaved generation methods. In addition, we present IntJudge, a judge model for evaluating open-ended multimodal generation methods. Trained with a novel data pipeline, our IntJudge achieves an agreement rate of 82. 42% with human judgments, outperforming GPT-based evaluators by 11.34%. Extensive experiments on OpenING reveal that current interleaved generation methods still have substantial room for improvement. Key findings on interleaved image-text generation are further presented to guide the development of next-generation models. The OpenING is open-sourced at this https URL.
https://arxiv.org/abs/2411.18499
Interleaved image-text generation has emerged as a crucial multimodal task, aiming at creating sequences of interleaved visual and textual content given a query. Despite notable advancements in recent multimodal large language models (MLLMs), generating integrated image-text sequences that exhibit narrative coherence and entity and style consistency remains challenging due to poor training data quality. To address this gap, we introduce CoMM, a high-quality Coherent interleaved image-text MultiModal dataset designed to enhance the coherence, consistency, and alignment of generated multimodal content. Initially, CoMM harnesses raw data from diverse sources, focusing on instructional content and visual storytelling, establishing a foundation for coherent and consistent content. To further refine the data quality, we devise a multi-perspective filter strategy that leverages advanced pre-trained models to ensure the development of sentences, consistency of inserted images, and semantic alignment between them. Various quality evaluation metrics are designed to prove the high quality of the filtered dataset. Meanwhile, extensive few-shot experiments on various downstream tasks demonstrate CoMM's effectiveness in significantly enhancing the in-context learning capabilities of MLLMs. Moreover, we propose four new tasks to evaluate MLLMs' interleaved generation abilities, supported by a comprehensive evaluation framework. We believe CoMM opens a new avenue for advanced MLLMs with superior multimodal in-context learning and understanding ability.
https://arxiv.org/abs/2406.10462
The transformer architecture has become an integral part of the field of modern neural networks, playing a crucial role in a variety of tasks, such as text generation, machine translation, image and audio processing, among others. There is also an alternative approach to building intelligent systems, proposed by Jeff Hawkins and inspired by the processes occurring in the neocortex. In our article we want to combine some of these ideas and to propose the use of homeostazis mechanisms, such as RFB-kWTA and "Smart" Inhibition, in the attention mechanism of the transformer and at the output of the transformer block, as well as conducting an experiment involving the introduction of sparse distributed representations of the transformer at various points. RFB-kWTA utilizes statistics of layer activations across time to adjust the entire layer, enhancing the values of rare activations while reducing those of frequent ones. "Smart" Inhibition also uses activation statistics to sample sparsity masks, with rarer activation times are more likely to be activated. Our proposed mechanisms significantly outperform the classical transformer 0.2768 BLEU and a model that only makes use of dropout in the attention mechanism and output of the transformer block 0.3007 BLEU, achieving a score of 0.3062 on the Multi30K dataset.
https://arxiv.org/abs/2412.00503
In neural video codecs, current state-of-the-art methods typically adopt multi-scale motion compensation to handle diverse motions. These methods estimate and compress either optical flow or deformable offsets to reduce inter-frame redundancy. However, flow-based methods often suffer from inaccurate motion estimation in complicated scenes. Deformable convolution-based methods are more robust but have a higher bit cost for motion coding. In this paper, we propose a hybrid context generation module, which combines the advantages of the above methods in an optimal way and achieves accurate compensation at a low bit cost. Specifically, considering the characteristics of features at different scales, we adopt flow-guided deformable compensation at largest-scale to produce accurate alignment in detailed regions. For smaller-scale features, we perform flow-based warping to save the bit cost for motion coding. Furthermore, we design a local-global context enhancement module to fully explore the local-global information of previous reconstructed signals. Experimental results demonstrate that our proposed Hybrid Local-Global Context learning (HLGC) method can significantly enhance the state-of-the-art methods on standard test datasets.
https://arxiv.org/abs/2412.00446
Large Language Models (LLMs) have shown exceptional performance across various Data-to-Text Generation (DTG) tasks. However, generating factually consistent text in DTG remains challenging for LLMs. Despite this, in-depth evaluations of LLM factual consistency for DTG remain missing in the current literature. This paper addresses this gap by providing an extensive evaluation of factual consistency in LLMs for DTG. Our evaluation covers five widely used DTG datasets (E2E, ViGGo, WikiTableText, DART, and WebNLG) and five prominent LLM families (T5, BART, OPT, BLOOM, and Llama 2). To ensure a thorough evaluation of factual consistency, we use four state-of-the-art automatic metrics and include essential human assessments. Our extensive evaluations reveals three key findings regarding factual consistency in LLMs for DTG. First, Llama 2 often excels in generating factually consistent text, although smaller models like T5 and BART can achieve strong factual consistency on larger, lexically less-diverse datasets. Second, the average rate of change (AROC) indicates that increasing model size (number of model trainable parameters) generally enhances factual consistency of LLMs in DTG. Third, we observe that source-reference divergence (i.e., when the reference text diverges semantically from the source) typically reduces the factual consistency of LLMs in DTG.
https://arxiv.org/abs/2411.19203
We introduce Orthus, an autoregressive (AR) transformer that excels in generating images given textual prompts, answering questions based on visual inputs, and even crafting lengthy image-text interleaved contents. Unlike prior arts on unified multimodal modeling, Orthus simultaneously copes with discrete text tokens and continuous image features under the AR modeling principle. The continuous treatment of visual signals minimizes the information loss for both image understanding and generation while the fully AR formulation renders the characterization of the correlation between modalities straightforward. The key mechanism enabling Orthus to leverage these advantages lies in its modality-specific heads -- one regular language modeling (LM) head predicts discrete text tokens and one diffusion head generates continuous image features conditioning on the output of the backbone. We devise an efficient strategy for building Orthus -- by substituting the Vector Quantization (VQ) operation in the existing unified AR model with a soft alternative, introducing a diffusion head, and tuning the added modules to reconstruct images, we can create an Orthus-base model effortlessly (e.g., within mere 72 A100 GPU hours). Orthus-base can further embrace post-training to better model interleaved images and texts. Empirically, Orthus surpasses competing baselines including Show-o and Chameleon across standard benchmarks, achieving a GenEval score of 0.58 and an MME-P score of 1265.8 using 7B parameters. Orthus also shows exceptional mixed-modality generation capabilities, reflecting the potential for handling intricate practical generation tasks.
https://arxiv.org/abs/2412.00127
The SQL-to-text generation task traditionally uses template base, Seq2Seq, tree-to-sequence, and graph-to-sequence models. Recent models take advantage of pre-trained generative language models for this task in the Seq2Seq framework. However, treating SQL as a sequence of inputs to the pre-trained models is not optimal. In this work, we put forward a new SQL intermediate representation called EzSQL to align SQL with the natural language text sequence. EzSQL simplifies the SQL queries and brings them closer to natural language text by modifying operators and keywords, which can usually be described in natural language. EzSQL also removes the need for set operators. Our proposed SQL-to-text generation model uses EzSQL as the input to a pre-trained generative language model for generating the text descriptions. We demonstrate that our model is an effective state-of-the-art method to generate text narrations from SQL queries on the WikiSQL and Spider datasets. We also show that by generating pretraining data using our SQL-to-text generation model, we can enhance the performance of Text-to-SQL parsers.
https://arxiv.org/abs/2411.18923
Text-to-image diffusion models produce impressive results but are frustrating tools for artists who desire fine-grained control. For example, a common use case is to create images of a specific instance in novel contexts, i.e., "identity-preserving generation". This setting, along with many other tasks (e.g., relighting), is a natural fit for image+text-conditional generative models. However, there is insufficient high-quality paired data to train such a model directly. We propose Diffusion Self-Distillation, a method for using a pre-trained text-to-image model to generate its own dataset for text-conditioned image-to-image tasks. We first leverage a text-to-image diffusion model's in-context generation ability to create grids of images and curate a large paired dataset with the help of a Visual-Language Model. We then fine-tune the text-to-image model into a text+image-to-image model using the curated paired dataset. We demonstrate that Diffusion Self-Distillation outperforms existing zero-shot methods and is competitive with per-instance tuning techniques on a wide range of identity-preservation generation tasks, without requiring test-time optimization.
文本到图像的扩散模型能够产生令人印象深刻的结果,但对于希望实现精细控制的艺术家而言却是令人沮丧的工具。例如,一个常见的应用场景是创建特定实例在新背景下的图像,即“身份保持生成”。这种设置以及其他许多任务(如重新打光)非常适合基于图像和文本条件的生成模型。然而,缺乏高质量的配对数据直接训练这样的模型。我们提出了扩散自蒸馏方法,利用预训练的文本到图像模型生成自己的数据集用于文本条件下的图像到图像任务。首先,我们利用一个文本到图像扩散模型的上下文生成能力创建图像网格,并借助视觉-语言模型帮助整理出一个大规模配对数据集。然后,我们使用这个整理好的配对数据集将文本到图像模型微调为一个基于文本和图像输入的图像生成模型。我们的实验表明,扩散自蒸馏方法在广泛的保持身份生成任务上超越了现有的零样本方法,并且无需测试时优化也能够与针对每个实例进行调整的技术相竞争。
https://arxiv.org/abs/2411.18616
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning and text generation. However, these models can inadvertently generate unsafe or biased responses when prompted with problematic inputs, raising significant ethical and practical concerns for real-world deployment. This research addresses the critical challenge of developing language models that generate both helpful and harmless content, navigating the delicate balance between model performance and safety. We demonstrate that incorporating safety-related instructions during the instruction-tuning of pre-trained models significantly reduces toxic responses to unsafe prompts without compromising performance on helpfulness datasets. We found Direct Preference Optimization (DPO) to be particularly effective, outperforming both SIT and RAFT by leveraging both chosen and rejected responses for learning. Our approach increased safe responses from 40$\%$ to over 90$\%$ across various harmfulness benchmarks. In addition, we discuss a rigorous evaluation framework encompassing specialized metrics and diverse datasets for safety and helpfulness tasks ensuring a comprehensive assessment of the model's capabilities.
https://arxiv.org/abs/2412.00074
Recent advancements in Virtual Try-On (VTO) have demonstrated exceptional efficacy in generating realistic images and preserving garment details, largely attributed to the robust generative capabilities of text-to-image (T2I) diffusion backbones. However, the T2I models that underpin these methods have become outdated, thereby limiting the potential for further improvement in VTO. Additionally, current methods face notable challenges in accurately rendering text on garments without distortion and preserving fine-grained details, such as textures and material fidelity. The emergence of Diffusion Transformer (DiT) based T2I models has showcased impressive performance and offers a promising opportunity for advancing VTO. Directly applying existing VTO techniques to transformer-based T2I models is ineffective due to substantial architectural differences, which hinder their ability to fully leverage the models' advanced capabilities for improved text generation. To address these challenges and unlock the full potential of DiT-based T2I models for VTO, we propose TED-VITON, a novel framework that integrates a Garment Semantic (GS) Adapter for enhancing garment-specific features, a Text Preservation Loss to ensure accurate and distortion-free text rendering, and a constraint mechanism to generate prompts by optimizing Large Language Model (LLM). These innovations enable state-of-the-art (SOTA) performance in visual quality and text fidelity, establishing a new benchmark for VTO task.
近期在虚拟试穿(VTO)领域的进展展示了生成逼真图像和保持服装细节的卓越效果,这主要归功于文本到图像(T2I)扩散模型的强大生成能力。然而,支撑这些方法的T2I模型已经过时,限制了进一步改进VTO的潜力。此外,现有方法在准确呈现衣物上的文字而不失真以及保持精细纹理和材质真实感方面面临显著挑战。基于扩散变换器(DiT)的T2I模型展示了出色的表现,并为推进VTO提供了令人期待的机会。然而,由于架构差异显著,直接将现有的VTO技术应用到基于变换器的T2I模型上是无效的,这阻碍了它们充分利用这些模型在文本生成方面的先进能力。为了应对这些挑战并释放DiT基础T2I模型在VTO中的全部潜力,我们提出TED-VITON——一个集成服装语义(GS)适配器以增强特定于服装的功能、文本保留损失以确保准确且无失真地渲染文字以及通过优化大型语言模型(LLM)生成提示的约束机制的新框架。这些创新使得在视觉质量和文本保真度上达到最先进的性能,为VTO任务建立了新的基准。
https://arxiv.org/abs/2411.17017