Recent advances in context optimization (CoOp) guided by large language model (LLM)-distilled medical semantic priors offer a scalable alternative to manual prompt engineering and full fine-tuning for adapting biomedical CLIP-based vision-language models (VLMs). However, prompt learning in this context is challenged by semantic misalignment between LLMs and CLIP variants due to divergent training corpora and model architectures; it further lacks scalability across continuously evolving families of foundation models. More critically, pairwise multimodal alignment via conventional Euclidean-space optimization lacks the capacity to model unified representations or apply localized geometric constraints, which tends to amplify modality gaps in complex biomedical imaging and destabilize few-shot adaptation. In this work, we propose vMFCoOp, a framework that inversely estimates von Mises-Fisher (vMF) distributions on a shared Hyperspherical Manifold, aligning semantic biases between arbitrary LLMs and CLIP backbones via Unified Semantic Anchors to achieve robust biomedical prompting and superior few-shot classification. Grounded in three complementary constraints, vMFCoOp demonstrates consistent improvements across 14 medical datasets, 12 medical imaging modalities, and 13 anatomical regions, outperforming state-of-the-art methods in accuracy, generalization, and clinical applicability. This work will be continuously expanded to encompass more downstream applications, and the corresponding resources are intended to be shared through this https URL.
https://arxiv.org/abs/2511.09540
We consider the problem of certified robustness for sequence classification against edit distance perturbations. Naturally occurring inputs of varying lengths (e.g., sentences in natural language processing tasks) present a challenge to current methods that employ fixed-rate deletion mechanisms and lead to suboptimal performance. To this end, we introduce AdaptDel methods with adaptable deletion rates that dynamically adjust based on input properties. We extend the theoretical framework of randomized smoothing to variable-rate deletion, ensuring sound certification with respect to edit distance. We achieve strong empirical results in natural language tasks, observing up to 30 orders of magnitude improvement to median cardinality of the certified region, over state-of-the-art certifications.
https://arxiv.org/abs/2511.09316
Khmer polarity classification is a fundamental natural language processing task that assigns a positive, negative, or neutral label to a given Khmer text input. Existing Khmer models typically predict the label without explaining the rationale behind the prediction. This paper proposes an explainable Khmer polarity classifier by fine-tuning an instruction-based reasoning Qwen-3 model. The notion of explainability in this paper is limited to self-explanations, which the model uses to rationalize its predictions. Experimental results show that the fine-tuned model not only predicts labels accurately but also provides reasoning by identifying polarity-related keywords or phrases to support its predictions. In addition, we contribute a new Khmer polarity dataset consisting of short- to medium-length casual, romanized, and mixed-code Khmer expressions. This dataset was constructed using both heuristic rules and human curation and is publicly available through a gated Hugging Face repository (rinabuoy/khmerpolarity_nonreasoning). The fine-tuned Qwen-3 models are also made available in the same Hugging Face account.
https://arxiv.org/abs/2511.09313
Deep neural networks typically learn spatially entangled representations that conflate discriminative foreground features with spurious background correlations, thereby undermining model interpretability and robustness. We propose a novel understanding framework for gradient-based attribution from an information-theoretic perspective. We prove that, under mild conditions, the Vector-Jacobian Products (VJP) computed during backpropagation form minimal sufficient statistics of input features with respect to class labels. Motivated by this finding, we propose an encoding-decoding perspective : forward propagation encodes inputs into class space, while VJP in backpropagation decodes this encoding back to feature space. Therefore, we propose Spatial Information Bottleneck (S-IB) to spatially disentangle information flow. By maximizing mutual information between foreground VJP and inputs while minimizing mutual information in background regions, S-IB encourages networks to encode information only in class-relevant spatial regions. Since post-hoc explanation methods fundamentally derive from VJP computations, directly optimizing VJP's spatial structure during training improves visualization quality across diverse explanation paradigms. Experiments on five benchmarks demonstrate universal improvements across six explanation methods, achieving better foreground concentration and background suppression without method-specific tuning, alongside consistent classification accuracy gains.
https://arxiv.org/abs/2511.09239
Personalized learning has gained attention in English as a Foreign Language (EFL) education, where engagement and motivation play crucial roles in reading comprehension. We propose a novel approach to generating personalized English reading comprehension tests tailored to students' interests. We develop a structured content transcreation pipeline using OpenAI's gpt-4o, where we start with the RACE-C dataset, and generate new passages and multiple-choice reading comprehension questions that are linguistically similar to the original passages but semantically aligned with individual learners' interests. Our methodology integrates topic extraction, question classification based on Bloom's taxonomy, linguistic feature analysis, and content transcreation to enhance student engagement. We conduct a controlled experiment with EFL learners in South Korea to examine the impact of interest-aligned reading materials on comprehension and motivation. Our results show students learning with personalized reading passages demonstrate improved comprehension and motivation retention compared to those learning with non-personalized materials.
https://arxiv.org/abs/2511.09135
Deep neural networks have achieved remarkable results in computer vision tasks. In the early days, Convolutional Neural Networks (CNNs) were the mainstream architecture. In recent years, Vision Transformers (ViTs) have become increasingly popular. In addition, exploring applications of multi-layer perceptrons (MLPs) has provided new perspectives for research into vision model architectures. In this paper, we present evMLP accompanied by a simple event-driven local update mechanism. The proposed evMLP can independently process patches on images or feature maps via MLPs. We define changes between consecutive frames as ``events''. Under the event-driven local update mechanism, evMLP selectively processes patches where events occur. For sequential image data (e.g., video processing), this approach improves computational performance by avoiding redundant computations. Through ImageNet image classification experiments, evMLP attains accuracy competitive with state-of-the-art models. More significantly, experimental results on multiple video datasets demonstrate that evMLP reduces computational cost via its event-driven local update mechanism while maintaining output consistency with its non-event-driven baseline. The code and pre-trained models are available at this https URL.
https://arxiv.org/abs/2507.01927
We present TransactionGPT (TGPT), a foundation model for consumer transaction data within one of world's largest payment networks. TGPT is designed to understand and generate transaction trajectories while simultaneously supporting a variety of downstream prediction and classification tasks. We introduce a novel 3D-Transformer architecture specifically tailored for capturing the complex dynamics in payment transaction data. This architecture incorporates design innovations that enhance modality fusion and computational efficiency, while seamlessly enabling joint optimization with downstream objectives. Trained on billion-scale real-world transactions, TGPT significantly improves downstream classification performance against a competitive production model and exhibits advantages over baselines in generating future transactions. We conduct extensive empirical evaluations utilizing a diverse collection of company transaction datasets spanning multiple downstream tasks, thereby enabling a thorough assessment of TGPT's effectiveness and efficiency in comparison to established methodologies. Furthermore, we examine the incorporation of LLM-derived embeddings within TGPT and benchmark its performance against fine-tuned LLMs, demonstrating that TGPT achieves superior predictive accuracy as well as faster training and inference. We anticipate that the architectural innovations and practical guidelines from this work will advance foundation models for transaction-like data and catalyze future research in this emerging field.
https://arxiv.org/abs/2511.08939
Cross-modal Knowledge Distillation has demonstrated promising performance on paired modalities with strong semantic connections, referred to as Symmetric Cross-modal Knowledge Distillation (SCKD). However, implementing SCKD becomes exceedingly constrained in real-world scenarios due to the limited availability of paired modalities. To this end, we investigate a general and effective knowledge learning concept under weak semantic consistency, dubbed Asymmetric Cross-modal Knowledge Distillation (ACKD), aiming to bridge modalities with limited semantic overlap. Nevertheless, the shift from strong to weak semantic consistency improves flexibility but exacerbates challenges in knowledge transmission costs, which we rigorously verified based on optimal transport theory. To mitigate the issue, we further propose a framework, namely SemBridge, integrating a Student-Friendly Matching module and a Semantic-aware Knowledge Alignment module. The former leverages self-supervised learning to acquire semantic-based knowledge and provide personalized instruction for each student sample by dynamically selecting the relevant teacher samples. The latter seeks the optimal transport path by employing Lagrangian optimization. To facilitate the research, we curate a benchmark dataset derived from two modalities, namely Multi-Spectral (MS) and asymmetric RGB images, tailored for remote sensing scene classification. Comprehensive experiments exhibit that our framework achieves state-of-the-art performance compared with 7 existing approaches on 6 different model architectures across various datasets.
https://arxiv.org/abs/2511.08901
Object recognition plays a fundamental role in how biological organisms perceive and interact with their environment. While the human visual system performs this task with remarkable efficiency, reproducing similar capabilities in artificial systems remains challenging. This study investigates VisNet, a biologically inspired neural network model, and several enhanced variants incorporating radial basis function neurons, Mahalanobis distance based learning, and retinal like preprocessing for both general object recognition and symmetry classification. By leveraging principles of Hebbian learning and temporal continuity associating temporally adjacent views to build invariant representations. VisNet and its extensions capture robust and transformation invariant features. Experimental results across multiple datasets, including MNIST, CIFAR10, and custom symmetric object sets, show that these enhanced VisNet variants substantially improve recognition accuracy compared with the baseline model. These findings underscore the adaptability and biological relevance of VisNet inspired architectures, offering a powerful and interpretable framework for visual recognition in both neuroscience and artificial intelligence. Keywords: VisNet, Object Recognition, Symmetry Detection, Hebbian Learning, RBF Neurons, Mahalanobis Distance, Biologically Inspired Models, Invariant Representations
https://arxiv.org/abs/2511.08897
Glioblastoma (GBM) is the most common aggressive, fast-growing brain tumor, with a grim prognosis. Despite clinical diagnostic advancements, there have not been any substantial improvements to patient prognosis. Histopathological assessment of excised tumors is the first line of clinical diagnostic routine. We hypothesize that automated, robust, and accurate identification of distinct histological sub-regions within GBM could contribute to morphologically understanding this disease at scale. In this study, we designed a four-step deep learning approach to classify six (6) histopathological regions and quantitatively evaluated it on the BraTS-Path 2024 challenge dataset, which includes digitized Hematoxylin \& Eosin (H\&E) stained GBM tissue sections annotated for six distinct regions. We used the challenge's publicly available training dataset to develop and evaluate the effectiveness of several variants of EfficientNet architectures (i.e., B0, B1, B2, B3, B4). EfficientNet-B1 and EfficientNet-B4 achieved the best performance, achieving an F1 score of 0.98 in a 5-fold cross-validation configuration using the BraTS-Path training set. The quantitative performance evaluation of our proposed approach with EfficientNet-B1 on the BraTS-Path hold-out validation data and the final hidden testing data yielded F1 scores of 0.546 and 0.517, respectively, for the associated 6-class classification task. The difference in the performance on training, validation, and testing data highlights the challenge of developing models that generalize well to new data, which is crucial for clinical applications. The source code of the proposed approach can be found at the GitHub repository of Indiana University Division of Computational Pathology: this https URL.
https://arxiv.org/abs/2511.08896
Recent advances in rotation-invariant (RI) learning for 3D point clouds typically replace raw coordinates with handcrafted RI features to ensure robustness under arbitrary rotations. However, these approaches often suffer from the loss of global pose information, making them incapable of distinguishing geometrically similar but spatially distinct structures. We identify that this limitation stems from the restricted receptive field in existing RI methods, leading to Wing-tip feature collapse, a failure to differentiate symmetric components (e.g., left and right airplane wings) due to indistinguishable local geometries. To overcome this challenge, we introduce the Shadow-informed Pose Feature (SiPF), which augments local RI descriptors with a globally consistent reference point (referred to as the 'shadow') derived from a learned shared rotation. This mechanism enables the model to preserve global pose awareness while maintaining rotation invariance. We further propose Rotation-invariant Attention Convolution (RIAttnConv), an attention-based operator that integrates SiPFs into the feature aggregation process, thereby enhancing the model's capacity to distinguish structurally similar components. Additionally, we design a task-adaptive shadow locating module based on the Bingham distribution over unit quaternions, which dynamically learns the optimal global rotation for constructing consistent shadows. Extensive experiments on 3D classification and part segmentation benchmarks demonstrate that our approach substantially outperforms existing RI methods, particularly in tasks requiring fine-grained spatial discrimination under arbitrary rotations.
https://arxiv.org/abs/2511.08833
This work presents a global-to-local, task-aware fault detection and identification (FDI) framework for multi-spacecraft systems conducting collaborative inspection missions in low Earth orbit. The inspection task is represented by a global information-driven cost functional that integrates the sensor model, spacecraft poses, and mission-level information-gain objectives. This formulation links guidance, control, and FDI by using the same cost function to drive both global task allocation and local sensing or motion decisions. Fault detection is achieved through comparisons between expected and observed task metrics, while higher-order cost-gradient measures enable the identification of faults among sensors, actuators, and state estimators. An adaptive thresholding mechanism captures the time-varying inspection geometry and dynamic mission conditions. Simulation results for representative multi-spacecraft inspection scenarios demonstrate the reliability of fault localization and classification under uncertainty, providing a unified, information-driven foundation for resilient autonomous inspection architectures.
https://arxiv.org/abs/2511.08752
Image classification systems often inherit biases from uneven group representation in training data. For example, in face datasets for hair color classification, blond hair may be disproportionately associated with females, reinforcing stereotypes. A recent approach leverages the Stable Diffusion model to generate balanced training data, but these models often struggle to preserve the original data distribution. In this work, we explore multiple diffusion-finetuning techniques, e.g., LoRA and DreamBooth, to generate images that more accurately represent each training group by learning directly from their samples. Additionally, in order to prevent a single DreamBooth model from being overwhelmed by excessive intra-group variations, we explore a technique of clustering images within each group and train a DreamBooth model per cluster. These models are then used to generate group-balanced data for pretraining, followed by fine-tuning on real data. Experiments on multiple benchmarks demonstrate that the studied finetuning approaches outperform vanilla Stable Diffusion on average and achieve results comparable to SOTA debiasing techniques like Group-DRO, while surpassing them as the dataset bias severity increases.
https://arxiv.org/abs/2511.08711
This paper investigates the scaling properties of autoregressive next-pixel prediction, a simple, end-to-end yet under-explored framework for unified vision models. Starting with images at resolutions of 32x32, we train a family of Transformers using IsoFlops profiles across compute budgets up to 7e19 FLOPs and evaluate three distinct target metrics: next-pixel prediction objective, ImageNet classification accuracy, and generation quality measured by Fr'echet Distance. First, optimal scaling strategy is critically task-dependent. At a fixed 32x32 resolution alone, the optimal scaling properties for image classification and image generation diverge, where generation optimal setup requires the data size grow three to five times faster than for the classification optimal setup. Second, as image resolution increases, the optimal scaling strategy indicates that the model size must grow much faster than data size. Surprisingly, by projecting our findings, we discover that the primary bottleneck is compute rather than the amount of training data. As compute continues to grow four to five times annually, we forecast the feasibility of pixel-by-pixel modeling of images within the next five years.
https://arxiv.org/abs/2511.08704
Kolmogorov-Arnold Networks (KANs) are a class of neural networks that have received increased attention in recent literature. In contrast to MLPs, KANs leverage parameterized, trainable activation functions and offer several benefits including improved interpretability and higher accuracy on learning symbolic equations. However, the original KAN architecture requires adjustments to the domain discretization of the network (called the "domain grid") during training, creating extra overhead for the user in the training process. Typical KAN layers are not designed with the ability to autonomously update their domains in a data-driven manner informed by the changing output ranges of previous layers. As an added benefit, this histogram algorithm may also be applied towards detecting out-of-distribution (OOD) inputs in a variety of settings. We demonstrate that AdaptKAN exceeds or matches the performance of prior KAN architectures and MLPs on four different tasks: learning scientific equations from the Feynman dataset, image classification from frozen features, learning a control Lyapunov function, and detecting OOD inputs on the OpenOOD v1.5 benchmark.
https://arxiv.org/abs/2511.08570
This work presents a novel spiking neural network (SNN) decoding method, combining SNNs with Hyperdimensional computing (HDC). The goal is to create a decoding method with high accuracy, high noise robustness, low latency and low energy usage. Compared to analogous architectures decoded with existing approaches, the presented SNN-HDC model attains generally better classification accuracy, lower classification latency and lower estimated energy consumption on multiple test cases from literature. The SNN-HDC achieved estimated energy consumption reductions ranging from 1.24x to 3.67x on the DvsGesture dataset and from 1.38x to 2.27x on the SL-Animals-DVS dataset. The presented decoding method can also efficiently identify unknown classes it has not been trained on. In the DvsGesture dataset the SNN-HDC model can identify 100% of samples from an unseen/untrained class. Given the numerous benefits shown and discussed in this paper, this decoding method represents a very compelling alternative to both rate and latency decoding.
https://arxiv.org/abs/2511.08558
Mastering fine-grained visual recognition, essential in many expert domains, can require that specialists undergo years of dedicated training. Modeling the progression of such expertize in humans remains challenging, and accurately inferring a human learner's knowledge state is a key step toward understanding visual learning. We introduce CleverBirds, a large-scale knowledge tracing benchmark for fine-grained bird species recognition. Collected by the citizen-science platform eBird, it offers insight into how individuals acquire expertize in complex fine-grained classification. More than 40,000 participants have engaged in the quiz, answering over 17 million multiple-choice questions spanning over 10,000 bird species, with long-range learning patterns across an average of 400 questions per participant. We release this dataset to support the development and evaluation of new methods for visual knowledge tracing. We show that tracking learners' knowledge is challenging, especially across participant subgroups and question types, with different forms of contextual information offering varying degrees of predictive benefit. CleverBirds is among the largest benchmark of its kind, offering a substantially higher number of learnable concepts. With it, we hope to enable new avenues for studying the development of visual expertize over time and across individuals.
https://arxiv.org/abs/2511.08512
Now that disease-modifying therapies for Alzheimer disease have been approved by regulatory agencies, the early, objective, and accurate clinical diagnosis of AD based on the lowest-cost measurement modalities possible has become an increasingly urgent need. In this study, we propose a novel feature extraction method using persistent homology to analyze structural MRI of the brain. This approach converts topological features into powerful feature vectors through Betti functions. By integrating these feature vectors with a simple machine learning model like XGBoost, we achieve a computationally efficient machine learning model. Our model outperforms state-of-the-art deep learning models in both binary and three-class classification tasks for ADNI 3D MRI disease diagnosis. Using 10-fold cross-validation, our model achieved an average accuracy of 97.43 percent and sensitivity of 99.09 percent for binary classification. For three-class classification, it achieved an average accuracy of 95.47 percent and sensitivity of 94.98 percent. Unlike many deep learning models, our approach does not require data augmentation or extensive preprocessing, making it particularly suitable for smaller datasets. Topological features differ significantly from those commonly extracted using convolutional filters and other deep learning machinery. Because it provides an entirely different type of information from machine learning models, it has the potential to combine topological features with other models later on.
https://arxiv.org/abs/2511.08663
This study presents a federated learning (FL) framework for privacy-preserving electrocardiogram (ECG) classification in Internet of Things (IoT) healthcare environments. By transforming 1D ECG signals into 2D Gramian Angular Field (GAF) images, the proposed approach enables efficient feature extraction through Convolutional Neural Networks (CNNs) while ensuring that sensitive medical data remain local to each device. This work is among the first to experimentally validate GAF-based federated ECG classification across heterogeneous IoT devices, quantifying both performance and communication efficiency. To evaluate feasibility in realistic IoT settings, we deployed the framework across a server, a laptop, and a resource-constrained Raspberry Pi 4, reflecting edge-cloud integration in IoT ecosystems. Experimental results demonstrate that the FL-GAF model achieves a high classification accuracy of 95.18% in a multi-client setup, significantly outperforming a single-client baseline in both accuracy and training time. Despite the added computational complexity of GAF transformations, the framework maintains efficient resource utilization and communication overhead. These findings highlight the potential of lightweight, privacy-preserving AI for IoT-based healthcare monitoring, supporting scalable and secure edge deployments in smart health systems.
https://arxiv.org/abs/2511.03753
Vision-language models advance multimodal representation learning by acquiring transferable semantic embeddings, thereby substantially enhancing performance across a range of vision-language tasks, including cross-modal retrieval, clustering, and classification. An effective embedding is expected to comprehensively preserve the semantic content of the input while simultaneously emphasizing features that are discriminative for downstream tasks. Recent approaches demonstrate that VLMs can be adapted into competitive embedding models via large-scale contrastive learning, enabling the simultaneous optimization of two complementary objectives. We argue that the two aforementioned objectives can be decoupled: a comprehensive understanding of the input facilitates the embedding model in achieving superior performance in downstream tasks via contrastive learning. In this paper, we propose CoMa, a compressed pre-training phase, which serves as a warm-up stage for contrastive learning. Experiments demonstrate that with only a small amount of pre-training data, we can transform a VLM into a competitive embedding model. CoMa achieves new state-of-the-art results among VLMs of comparable size on the MMEB, realizing optimization in both efficiency and effectiveness.
https://arxiv.org/abs/2511.08480