Computational humor is a frontier for creating advanced and engaging natural language processing (NLP) applications, such as sophisticated dialogue systems. While previous studies have benchmarked the humor capabilities of Large Language Models (LLMs), they have often relied on single-dimensional evaluations, such as judging whether something is simply ``funny.'' This paper argues that a multifaceted understanding of humor is necessary and addresses this gap by systematically evaluating LLMs through the lens of Oogiri, a form of Japanese improvisational comedy games. To achieve this, we expanded upon existing Oogiri datasets with data from new sources and then augmented the collection with Oogiri responses generated by LLMs. We then manually annotated this expanded collection with 5-point absolute ratings across six dimensions: Novelty, Clarity, Relevance, Intelligence, Empathy, and Overall Funniness. Using this dataset, we assessed the capabilities of state-of-the-art LLMs on two core tasks: their ability to generate creative Oogiri responses and their ability to evaluate the funniness of responses using a six-dimensional evaluation. Our results show that while LLMs can generate responses at a level between low- and mid-tier human performance, they exhibit a notable lack of Empathy. This deficit in Empathy helps explain their failure to replicate human humor assessment. Correlation analyses of human and model evaluation data further reveal a fundamental divergence in evaluation criteria: LLMs prioritize Novelty, whereas humans prioritize Empathy. We release our annotated corpus to the community to pave the way for the development of more emotionally intelligent and sophisticated conversational agents.
https://arxiv.org/abs/2511.09133
Emotional support is a core capability in human-AI interaction, with applications including psychological counseling, role play, and companionship. However, existing evaluations of large language models (LLMs) often rely on short, static dialogues and fail to capture the dynamic and long-term nature of emotional support. To overcome this limitation, we shift from snapshot-based evaluation to trajectory-based assessment, adopting a user-centered perspective that evaluates models based on their ability to improve and stabilize user emotional states over time. Our framework constructs a large-scale benchmark consisting of 328 emotional contexts and 1,152 disturbance events, simulating realistic emotional shifts under evolving dialogue scenarios. To encourage psychologically grounded responses, we constrain model outputs using validated emotion regulation strategies such as situation selection and cognitive reappraisal. User emotional trajectories are modeled as a first-order Markov process, and we apply causally-adjusted emotion estimation to obtain unbiased emotional state tracking. Based on this framework, we introduce three trajectory-level metrics: Baseline Emotional Level (BEL), Emotional Trajectory Volatility (ETV), and Emotional Centroid Position (ECP). These metrics collectively capture user emotional dynamics over time and support comprehensive evaluation of long-term emotional support performance of LLMs. Extensive evaluations across a diverse set of LLMs reveal significant disparities in emotional support capabilities and provide actionable insights for model development.
https://arxiv.org/abs/2511.09003
The performance of egocentric AI agents is fundamentally limited by multimodal intent ambiguity. This challenge arises from a combination of underspecified language, imperfect visual data, and deictic gestures, which frequently leads to task failure. Existing monolithic Vision-Language Models (VLMs) struggle to resolve these multimodal ambiguous inputs, often failing silently or hallucinating responses. To address these ambiguities, we introduce the Plug-and-Play Clarifier, a zero-shot and modular framework that decomposes the problem into discrete, solvable sub-tasks. Specifically, our framework consists of three synergistic modules: (1) a text clarifier that uses dialogue-driven reasoning to interactively disambiguate linguistic intent, (2) a vision clarifier that delivers real-time guidance feedback, instructing users to adjust their positioning for improved capture quality, and (3) a cross-modal clarifier with grounding mechanism that robustly interprets 3D pointing gestures and identifies the specific objects users are pointing to. Extensive experiments demonstrate that our framework improves the intent clarification performance of small language models (4--8B) by approximately 30%, making them competitive with significantly larger counterparts. We also observe consistent gains when applying our framework to these larger models. Furthermore, our vision clarifier increases corrective guidance accuracy by over 20%, and our cross-modal clarifier improves semantic answer accuracy for referential grounding by 5%. Overall, our method provides a plug-and-play framework that effectively resolves multimodal ambiguity and significantly enhances user experience in egocentric interaction.
https://arxiv.org/abs/2511.08971
Large language models (LLMs) have achieved impressive performance across a wide range of natural language processing tasks, yet they often produce hallucinated content that undermines factual reliability. To address this challenge, we introduce HalluClean, a lightweight and task-agnostic framework for detecting and correcting hallucinations in LLM-generated text. HalluClean adopts a reasoning-enhanced paradigm, explicitly decomposing the process into planning, execution, and revision stages to identify and refine unsupported claims. It employs minimal task-routing prompts to enable zero-shot generalization across diverse domains, without relying on external knowledge sources or supervised detectors. We conduct extensive evaluations on five representative tasks-question answering, dialogue, summarization, math word problems, and contradiction detection. Experimental results show that HalluClean significantly improves factual consistency and outperforms competitive baselines, demonstrating its potential to enhance the trustworthiness of LLM outputs in real-world applications.
https://arxiv.org/abs/2511.08916
Conversational agents have traditionally been developed for either task-oriented dialogue (TOD) or open-ended chitchat, with limited progress in unifying the two. Yet, real-world conversations naturally involve fluid transitions between these modes. To address this gap, we introduce TACT (TOD-And-Chitchat Transition), a dataset designed for transition-aware dialogue modeling that incorporates structurally diverse and integrated mode flows. TACT supports both user- and agent-driven mode switches, enabling robust modeling of complex conversational dynamics. To evaluate an agent's ability to initiate and recover from mode transitions, we propose two new metrics -- Switch and Recovery. Models trained on TACT outperform baselines in both intent detection and mode transition handling. Moreover, applying Direct Preference Optimization (DPO) to TACT-trained models yields additional gains, achieving 75.74\% joint mode-intent accuracy and a 70.1\% win rate against GPT-4o in human evaluation. These results demonstrate that pairing structurally diverse data with DPO enhances response quality and transition control, paving the way for more proactive and transition-aware conversational agents.
https://arxiv.org/abs/2511.08835
The alignment of Large Language Models (LLMs) for multi-turn conversations typically relies on reward signals derived from the content of the text. This approach, however, overlooks a rich, complementary source of signal: the dynamics of the interaction itself. This paper introduces TRACE (Trajectory-based Reward for Agent Collaboration Estimation), a novel reward signal derived from the geometric properties of a dialogue's embedding trajectory--a concept we term 'conversational geometry'. Our central finding is that a reward model trained only on these structural signals achieves a pairwise accuracy (68.20%) comparable to a powerful LLM baseline that analyzes the full transcript (70.04%). Furthermore, a hybrid model combining interaction dynamics with textual analysis achieves the highest performance (80.17%), demonstrating their complementary nature. This work provides strong evidence that for interactive settings, how an agent communicates is as powerful a predictor of success as what it says, offering a new, privacy-preserving framework that not only aligns agents but also serves as a diagnostic tool for understanding the distinct interaction patterns that drive successful collaboration.
https://arxiv.org/abs/2511.08394
This research presents a comprehensive investigation into Bangla authorship attribution, introducing a new balanced benchmark corpus BARD10 (Bangla Authorship Recognition Dataset of 10 authors) and systematically analyzing the impact of stop-word removal across classical and deep learning models to uncover the stylistic significance of Bangla stop-words. BARD10 is a curated corpus of Bangla blog and opinion prose from ten contemporary authors, alongside the methodical assessment of four representative classifiers: SVM (Support Vector Machine), Bangla BERT (Bidirectional Encoder Representations from Transformers), XGBoost, and a MLP (Multilayer Perception), utilizing uniform preprocessing on both BARD10 and the benchmark corpora BAAD16 (Bangla Authorship Attribution Dataset of 16 authors). In all datasets, the classical TF-IDF + SVM baseline outperformed, attaining a macro-F1 score of 0.997 on BAAD16 and 0.921 on BARD10, while Bangla BERT lagged by as much as five points. This study reveals that BARD10 authors are highly sensitive to stop-word pruning, while BAAD16 authors remain comparatively robust highlighting genre-dependent reliance on stop-word signatures. Error analysis revealed that high frequency components transmit authorial signatures that are diminished or reduced by transformer models. Three insights are identified: Bangla stop-words serve as essential stylistic indicators; finely calibrated ML models prove effective within short-text limitations; and BARD10 connects formal literature with contemporary web dialogue, offering a reproducible benchmark for future long-context or domain-adapted transformers.
https://arxiv.org/abs/2511.08085
Understanding human attitudes, preferences, and behaviors through social surveys is essential for academic research and policymaking. Yet traditional surveys face persistent challenges, including fixed-question formats, high costs, limited adaptability, and difficulties ensuring cross-cultural equivalence. While recent studies explore large language models (LLMs) to simulate survey responses, most are limited to structured questions, overlook the entire survey process, and risks under-representing marginalized groups due to training data biases. We introduce AlignSurvey, the first benchmark that systematically replicates and evaluates the full social survey pipeline using LLMs. It defines four tasks aligned with key survey stages: social role modeling, semi-structured interview modeling, attitude stance modeling and survey response modeling. It also provides task-specific evaluation metrics to assess alignment fidelity, consistency, and fairness at both individual and group levels, with a focus on demographic diversity. To support AlignSurvey, we construct a multi-tiered dataset architecture: (i) the Social Foundation Corpus, a cross-national resource with 44K+ interview dialogues and 400K+ structured survey records; and (ii) a suite of Entire-Pipeline Survey Datasets, including the expert-annotated AlignSurvey-Expert (ASE) and two nationally representative surveys for cross-cultural evaluation. We release the SurveyLM family, obtained through two-stage fine-tuning of open-source LLMs, and offer reference models for evaluating domain-specific alignment. All datasets, models, and tools are available at github and huggingface to support transparent and socially responsible research.
https://arxiv.org/abs/2511.07871
Deploying conversational voice agents with large language models faces a critical challenge: cloud-based foundation models provide deep reasoning and domain knowledge but introduce latency that disrupts natural conversation, while on-device models respond immediately but lack sophistication. We propose conversational infill, a task where a lightweight on-device model generates contextually appropriate dialogue while seamlessly incorporating streaming knowledge from a powerful backend model. This approach decouples response latency from model capability, enabling systems that feel responsive while accessing the full power of large-scale models. We present ConvFill, a 360M parameter model trained on synthetic multi-domain conversations. Evaluation across multiple backend models shows that conversational infill can be successfully learned, with ConvFill achieving accuracy improvements of 36-42% over standalone small models of the same size while consistently retaining sub-200ms response latencies. Our results demonstrate the promise of this approach for building on-device conversational agents that are both immediately responsive and knowledgeable.
https://arxiv.org/abs/2511.07397
Self-talk-an internal dialogue that can occur silently or be spoken aloud-plays a crucial role in emotional regulation, cognitive processing, and motivation, yet has remained largely invisible and unmeasurable in everyday life. In this paper, we present MutterMeter, a mobile system that automatically detects vocalized self-talk from audio captured by earable microphones in real-world settings. Detecting self-talk is technically challenging due to its diverse acoustic forms, semantic and grammatical incompleteness, and irregular occurrence patterns, which differ fundamentally from assumptions underlying conventional speech understanding models. To address these challenges, MutterMeter employs a hierarchical classification architecture that progressively integrates acoustic, linguistic, and contextual information through a sequential processing pipeline, adaptively balancing accuracy and computational efficiency. We build and evaluate MutterMeter using a first-of-its-kind dataset comprising 31.1 hours of audio collected from 25 participants. Experimental results demonstrate that MutterMeter achieves robust performance with a macro-averaged F1 score of 0.84, outperforming conventional approaches, including LLM-based and speech emotion recognition models.
https://arxiv.org/abs/2511.07493
Emotion Recognition in Conversation (ERC) is a crucial task for understanding human emotions and enabling natural human-computer interaction. Although Large Language Models (LLMs) have recently shown great potential in this field, their ability to capture the intrinsic connections between explicit and implicit emotions remains limited. We propose a novel ERC training framework, PRC-Emo, which integrates Prompt engineering, demonstration Retrieval, and Curriculum learning, with the goal of exploring whether LLMs can effectively perceive emotions in conversational contexts. Specifically, we design emotion-sensitive prompt templates based on both explicit and implicit emotional cues to better guide the model in understanding the speaker's psychological states. We construct the first dedicated demonstration retrieval repository for ERC, which includes training samples from widely used datasets, as well as high-quality dialogue examples generated by LLMs and manually verified. Moreover, we introduce a curriculum learning strategy into the LoRA fine-tuning process, incorporating weighted emotional shifts between same-speaker and different-speaker utterances to assign difficulty levels to dialogue samples, which are then organized in an easy-to-hard training sequence. Experimental results on two benchmark datasets-- IEMOCAP and MELD --show that our method achieves new state-of-the-art (SOTA) performance, demonstrating the effectiveness and generalizability of our approach in improving LLM-based emotional understanding.
https://arxiv.org/abs/2511.07061
In this work, we study the risks of collective financial fraud in large-scale multi-agent systems powered by large language model (LLM) agents. We investigate whether agents can collaborate in fraudulent behaviors, how such collaboration amplifies risks, and what factors influence fraud success. To support this research, we present MultiAgentFraudBench, a large-scale benchmark for simulating financial fraud scenarios based on realistic online interactions. The benchmark covers 28 typical online fraud scenarios, spanning the full fraud lifecycle across both public and private domains. We further analyze key factors affecting fraud success, including interaction depth, activity level, and fine-grained collaboration failure modes. Finally, we propose a series of mitigation strategies, including adding content-level warnings to fraudulent posts and dialogues, using LLMs as monitors to block potentially malicious agents, and fostering group resilience through information sharing at the societal level. Notably, we observe that malicious agents can adapt to environmental interventions. Our findings highlight the real-world risks of multi-agent financial fraud and suggest practical measures for mitigating them. Code is available at this https URL.
https://arxiv.org/abs/2511.06448
In Social Deduction Games (SDGs) such as Avalon, Mafia, and Werewolf, players conceal their identities and deliberately mislead others, making hidden-role inference a central and demanding task. Accurate role identification, which forms the basis of an agent's belief state, is therefore the keystone for both human and AI performance. We introduce CSP4SDG, a probabilistic, constraint-satisfaction framework that analyses gameplay objectively. Game events and dialogue are mapped to four linguistically-agnostic constraint classes-evidence, phenomena, assertions, and hypotheses. Hard constraints prune impossible role assignments, while weighted soft constraints score the remainder; information-gain weighting links each hypothesis to its expected value under entropy reduction, and a simple closed-form scoring rule guarantees that truthful assertions converge to classical hard logic with minimum error. The resulting posterior over roles is fully interpretable and updates in real time. Experiments on three public datasets show that CSP4SDG (i) outperforms LLM-based baselines in every inference scenario, and (ii) boosts LLMs when supplied as an auxiliary "reasoning tool." Our study validates that principled probabilistic reasoning with information theory is a scalable alternative-or complement-to heavy-weight neural models for SDGs.
https://arxiv.org/abs/2511.06175
Simulated Students offer a valuable methodological framework for evaluating pedagogical approaches and modelling diverse learner profiles, tasks which are otherwise challenging to undertake systematically in real-world settings. Recent research has increasingly focused on developing such simulated agents to capture a range of learning styles, cognitive development pathways, and social behaviours. Among contemporary simulation techniques, the integration of large language models (LLMs) into educational research has emerged as a particularly versatile and scalable paradigm. LLMs afford a high degree of linguistic realism and behavioural adaptability, enabling agents to approximate cognitive processes and engage in contextually appropriate pedagogical dialogues. This paper presents a thematic review of empirical and methodological studies utilising LLMs to simulate student behaviour across educational environments. We synthesise current evidence on the capacity of LLM-based agents to emulate learner archetypes, respond to instructional inputs, and interact within multi-agent classroom scenarios. Furthermore, we examine the implications of such systems for curriculum development, instructional evaluation, and teacher training. While LLMs surpass rule-based systems in natural language generation and situational flexibility, ongoing concerns persist regarding algorithmic bias, evaluation reliability, and alignment with educational objectives. The review identifies existing technological and methodological gaps and proposes future research directions for integrating generative AI into adaptive learning systems and instructional design.
https://arxiv.org/abs/2511.06078
Voice-controlled dialog systems have become immensely popular due to their ability to perform a wide range of actions in response to diverse user queries. These agents possess a predefined set of skills or intents to fulfill specific user tasks. But every system has its own limitations. There are instances where, even for known intents, if any model exhibits low confidence, it results in rejection of utterances that necessitate manual annotation. Additionally, as time progresses, there may be a need to retrain these agents with new intents from the system-rejected queries to carry out additional tasks. Labeling all these emerging intents and rejected utterances over time is impractical, thus calling for an efficient mechanism to reduce annotation costs. In this paper, we introduce IDALC (Intent Detection and Active Learning based Correction), a semi-supervised framework designed to detect user intents and rectify system-rejected utterances while minimizing the need for human annotation. Empirical findings on various benchmark datasets demonstrate that our system surpasses baseline methods, achieving a 5-10% higher accuracy and a 4-8% improvement in macro-F1. Remarkably, we maintain the overall annotation cost at just 6-10% of the unlabelled data available to the system. The overall framework of IDALC is shown in Fig. 1
https://arxiv.org/abs/2511.05921
New intent discovery (NID) seeks to recognize both new and known intents from unlabeled user utterances, which finds prevalent use in practical dialogue systems. Existing works towards NID mainly adopt a cascaded architecture, wherein the first stage focuses on encoding the utterances into informative text embeddings beforehand, while the latter is to group similar embeddings into clusters (i.e., intents), typically by K-Means. However, such a cascaded pipeline fails to leverage the feedback from both steps for mutual refinement, and, meanwhile, the embedding-only clustering overlooks nuanced textual semantics, leading to suboptimal performance. To bridge this gap, this paper proposes NILC, a novel clustering framework specially catered for effective NID. Particularly, NILC follows an iterative workflow, in which clustering assignments are judiciously updated by carefully refining cluster centroids and text embeddings of uncertain utterances with the aid of large language models (LLMs). Specifically, NILC first taps into LLMs to create additional semantic centroids for clusters, thereby enriching the contextual semantics of the Euclidean centroids of embeddings. Moreover, LLMs are then harnessed to augment hard samples (ambiguous or terse utterances) identified from clusters via rewriting for subsequent cluster correction. Further, we inject supervision signals through non-trivial techniques seeding and soft must links for more accurate NID in the semi-supervised setting. Extensive experiments comparing NILC against multiple recent baselines under both unsupervised and semi-supervised settings showcase that NILC can achieve significant performance improvements over six benchmark datasets of diverse domains consistently.
https://arxiv.org/abs/2511.05913
Youth increasingly turn to large language models (LLMs) for mental well-being support, yet current personalization in LLMs can overlook the heterogeneous lived experiences shaping their needs. We conducted a participatory study with youth, parents, and youth care workers (N=38), using co-created youth personas as scaffolds, to elicit community perspectives on how LLMs can facilitate more meaningful personalization to support youth mental well-being. Analysis identified three themes: person-centered contextualization responsive to momentary needs, explicit boundaries around scope and offline referral, and dialogic scaffolding for reflection and autonomy. We mapped these themes to persuasive design features for task suggestions, social facilitation, and system trustworthiness, and created corresponding dialogue extracts to guide LLM fine-tuning. Our findings demonstrate how lived experience can be operationalized to inform design features in LLMs, which can enhance the alignment of LLM-based interventions with the realities of youth and their communities, contributing to more effectively personalized digital well-being tools.
https://arxiv.org/abs/2511.05769
User satisfaction in dialogue systems is inherently subjective. When the same response strategy is applied across users, minority users may assign different satisfaction ratings than majority users due to variations in individual intents and preferences. However, existing alignment methods typically train one-size-fits-all models that aim for broad consensus, often overlooking minority perspectives and user-specific adaptation. We propose a unified framework that models both individual- and group-level preferences for user satisfaction estimation. First, we introduce Chain-of-Personalized-Reasoning (CoPeR) to capture individual preferences through interpretable reasoning chains. Second, we propose an expectation-maximization-based Majority-Minority Preference-Aware Clustering (M2PC) algorithm that discovers distinct user groups in an unsupervised manner to learn group-level preferences. Finally, we integrate these components into a preference-adaptive reinforcement learning framework (PAda-PPO) that jointly optimizes alignment with both individual and group preferences. Experiments on the Emotional Support Conversation dataset demonstrate consistent improvements in user satisfaction estimation, particularly for underrepresented user groups.
https://arxiv.org/abs/2511.05407
Today's autonomous agents can understand free-form natural language instructions and execute long-horizon tasks in a manner akin to human-level reasoning. These capabilities are mostly driven by large-scale pre-trained foundation models (FMs). However, the approaches with which these models are grounded for human-robot interaction (HRI) perpetuate a master-apprentice model, where the apprentice (embodied agent) passively receives and executes the master's (human's) commands without reciprocal learning. This reactive interaction approach does not capture the co-adaptive dynamics inherent in everyday multi-turn human-human interactions. To address this, we propose a Symbiotic Interactive Learning (SIL) approach that enables both the master and the apprentice to co-adapt through mutual, bidirectional interactions. We formalised SIL as a co-adaptation process within a shared latent task space, where the agent and human maintain joint belief states that evolve based on interaction history. This enables the agent to move beyond reactive execution to proactive clarification, adaptive suggestions, and shared plan refinement. To realise these novel behaviours, we leveraged pre-trained FMs for spatial perception and reasoning, alongside a lightweight latent encoder that grounds the models' outputs into task-specific representations. Furthermore, to ensure stability as the tasks evolve, we augment SIL with a memory architecture that prevents the forgetting of learned task-space representations. We validate SIL on both simulated and real-world embodied tasks, including instruction following, information retrieval, query-oriented reasoning, and interactive dialogues. Demos and resources are public at:~\href{this https URL}{this https URL}.
https://arxiv.org/abs/2511.05203
Large Language Models (LLMs) face significant computational and memory constraints when processing long contexts, despite growing demand for applications requiring reasoning over extensive documents, multi-session dialogues, and book length texts. While recent advances have extended context windows to 100K-1M tokens, such approaches incur prohibitive costs for resource constrained deployments. We propose BudgetMem, a novel memory augmented architecture that learns what to remember rather than remembering everything. Our system combines selective memory policies with feature based salience scoring (entity density, TF-IDF, discourse markers, position bias) to decide which information merits storage under strict budget constraints. Unlike existing retrieval augmented generation (RAG) systems that store all chunks, BudgetMem employs learned gating mechanisms coupled with BM25 sparse retrieval for efficient information access. Through comprehensive experiments on 700 question answer pairs across short (237 tokens) and long (5K-10K tokens) documents with Llama-3.2-3B-Instruct, we demonstrate that BudgetMem achieves remarkable results on long documents: only 1.0% F1 score degradation while saving 72.4% memory compared to baseline RAG. We validate our approach through budget sensitivity analysis (testing 7 budget ratios), naive baseline comparisons, and document length analysis, showing that BudgetMem's benefits increase with document length. Our work provides a practical pathway for deploying capable long context systems on modest hardware, democratizing access to advanced language understanding capabilities.
https://arxiv.org/abs/2511.04919