Paper Reading AI Learner

Global explainability in aligned image modalities

2021-12-17 16:05:11
Justin Engelmann, Amos Storkey, Miguel O. Bernabeu

Abstract

Deep learning (DL) models are very effective on many computer vision problems and increasingly used in critical applications. They are also inherently black box. A number of methods exist to generate image-wise explanations that allow practitioners to understand and verify model predictions for a given image. Beyond that, it would be desirable to validate that a DL model \textit{generally} works in a sensible way, i.e. consistent with domain knowledge and not relying on undesirable data artefacts. For this purpose, the model needs to be explained globally. In this work, we focus on image modalities that are naturally aligned such that each pixel position represents a similar relative position on the imaged object, as is common in medical imaging. We propose the pixel-wise aggregation of image-wise explanations as a simple method to obtain label-wise and overall global explanations. These can then be used for model validation, knowledge discovery, and as an efficient way to communicate qualitative conclusions drawn from inspecting image-wise explanations. We further propose Progressive Erasing Plus Progressive Restoration (PEPPR) as a method to quantitatively validate that these global explanations are faithful to how the model makes its predictions. We then apply these methods to ultra-widefield retinal images, a naturally aligned modality. We find that the global explanations are consistent with domain knowledge and faithfully reflect the model's workings.

Abstract (translated)

URL

https://arxiv.org/abs/2112.09591

PDF

https://arxiv.org/pdf/2112.09591.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot