Paper Reading AI Learner

A Comprehensive Study of Vision Transformers on Dense Prediction Tasks

2022-01-21 13:18:16
Kishaan Jeeveswaran, Senthilkumar Kathiresan, Arnav Varma, Omar Magdy, Bahram Zonooz, Elahe Arani

Abstract

Convolutional Neural Networks (CNNs), architectures consisting of convolutional layers, have been the standard choice in vision tasks. Recent studies have shown that Vision Transformers (VTs), architectures based on self-attention modules, achieve comparable performance in challenging tasks such as object detection and semantic segmentation. However, the image processing mechanism of VTs is different from that of conventional CNNs. This poses several questions about their generalizability, robustness, reliability, and texture bias when used to extract features for complex tasks. To address these questions, we study and compare VT and CNN architectures as feature extractors in object detection and semantic segmentation. Our extensive empirical results show that the features generated by VTs are more robust to distribution shifts, natural corruptions, and adversarial attacks in both tasks, whereas CNNs perform better at higher image resolutions in object detection. Furthermore, our results demonstrate that VTs in dense prediction tasks produce more reliable and less texture-biased predictions.

Abstract (translated)

URL

https://arxiv.org/abs/2201.08683

PDF

https://arxiv.org/pdf/2201.08683.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot