Paper Reading AI Learner

Human Motion Prediction via Spatio-Temporal Inpainting

2018-12-13 15:27:15
Alejandro Hernandez Ruiz, Juergen Gall, Francesc Moreno-Noguer

Abstract

We propose a Generative Adversarial Network (GAN) to forecast 3D human motion given a sequence of observed 3D skeleton poses. While recent GANs have shown promising results, they can only forecast plausible human-like motion over relatively short periods of time, i.e. a few hundred milliseconds, and typically ignore the absolute position of the skeleton w.r.t. the camera. The GAN scheme we propose can reliably provide long term predictions of two seconds or more for both the non-rigid body pose and its absolute position, and can be trained in an self-supervised manner. Our approach builds upon three main contributions. First, we consider a data representation based on a spatio-temporal tensor of 3D skeleton coordinates which allows us to formulate the prediction problem as an inpainting one, for which GANs work particularly well. Secondly, we design a GAN architecture to learn the joint distribution of body poses and global motion, allowing us to hypothesize large chunks of the input 3D tensor with missing data. And finally, we argue that the L2 metric, which is considered so far by most approaches, fails to capture the actual distribution of long-term human motion. We therefore propose an alternative metric that is more correlated with human perception. Our experiments demonstrate that our approach achieves significant improvements over the state of the art for human motion forecasting and that it also handles situations in which past observations are corrupted by severe occlusions, noise and consecutive missing frames.

Abstract (translated)

URL

https://arxiv.org/abs/1812.05478

PDF

https://arxiv.org/pdf/1812.05478.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot