Paper Reading AI Learner

Debiased Batch Normalization via Gaussian Process for Generalizable Person Re-Identification

2022-03-03 14:14:51
Jiawei Liu, Zhipeng Huang, Liang Li, Kecheng Zheng, Zheng-Jun Zha

Abstract

Generalizable person re-identification aims to learn a model with only several labeled source domains that can perform well on unseen domains. Without access to the unseen domain, the feature statistics of the batch normalization (BN) layer learned from a limited number of source domains is doubtlessly biased for unseen domain. This would mislead the feature representation learning for unseen domain and deteriorate the generalizaiton ability of the model. In this paper, we propose a novel Debiased Batch Normalization via Gaussian Process approach (GDNorm) for generalizable person re-identification, which models the feature statistic estimation from BN layers as a dynamically self-refining Gaussian process to alleviate the bias to unseen domain for improving the generalization. Specifically, we establish a lightweight model with multiple set of domain-specific BN layers to capture the discriminability of individual source domain, and learn the corresponding parameters of the domain-specific BN layers. These parameters of different source domains are employed to deduce a Gaussian process. We randomly sample several paths from this Gaussian process served as the BN estimations of potential new domains outside of existing source domains, which can further optimize these learned parameters from source domains, and estimate more accurate Gaussian process by them in return, tending to real data distribution. Even without a large number of source domains, GDNorm can still provide debiased BN estimation by using the mean path of the Gaussian process, while maintaining low computational cost during testing. Extensive experiments demonstrate that our GDNorm effectively improves the generalization ability of the model on unseen domain.

Abstract (translated)

URL

https://arxiv.org/abs/2203.01723

PDF

https://arxiv.org/pdf/2203.01723.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot