Paper Reading AI Learner

M2TS: Multi-Scale Multi-Modal Approach Based on Transformer for Source Code Summarization

2022-03-18 02:54:06
Yuexiu Gao, Chen Lyu

Abstract

Source code summarization aims to generate natural language descriptions of code snippets. Many existing studies learn the syntactic and semantic knowledge of code snippets from their token sequences and Abstract Syntax Trees (ASTs). They use the learned code representations as input to code summarization models, which can accordingly generate summaries describing source code. Traditional models traverse ASTs as sequences or split ASTs into paths as input. However, the former loses the structural properties of ASTs, and the latter destroys the overall structure of ASTs. Therefore, comprehensively capturing the structural features of ASTs in learning code representations for source code summarization remains a challenging problem to be solved. In this paper, we propose M2TS, a Multi-scale Multi-modal approach based on Transformer for source code Summarization. M2TS uses a multi-scale AST feature extraction method, which can extract the structures of ASTs more completely and accurately at multiple local and global levels. To complement missing semantic information in ASTs, we also obtain code token features, and further combine them with the extracted AST features using a cross modality fusion method that not only fuses the syntactic and contextual semantic information of source code, but also highlights the key features of each modality. We conduct experiments on two Java and one Python datasets, and the experimental results demonstrate that M2TS outperforms current state-of-the-art methods. We release our code at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2203.09707

PDF

https://arxiv.org/pdf/2203.09707.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot