Paper Reading AI Learner

Predicting and Explaining Mobile UI Tappability with Vision Modeling and Saliency Analysis

2022-04-05 18:51:32
Eldon Schoop, Xin Zhou, Gang Li, Zhourong Chen, Björn Hartmann, Yang Li

Abstract

We use a deep learning based approach to predict whether a selected element in a mobile UI screenshot will be perceived by users as tappable, based on pixels only instead of view hierarchies required by previous work. To help designers better understand model predictions and to provide more actionable design feedback than predictions alone, we additionally use ML interpretability techniques to help explain the output of our model. We use XRAI to highlight areas in the input screenshot that most strongly influence the tappability prediction for the selected region, and use k-Nearest Neighbors to present the most similar mobile UIs from the dataset with opposing influences on tappability perception.

Abstract (translated)

URL

https://arxiv.org/abs/2204.02448

PDF

https://arxiv.org/pdf/2204.02448.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot