Paper Reading AI Learner

Learning Pixel-Level Distinctions for Video Highlight Detection

2022-04-10 06:41:16
Fanyue Wei, Biao Wang, Tiezheng Ge, Yuning Jiang, Wen Li, Lixin Duan

Abstract

The goal of video highlight detection is to select the most attractive segments from a long video to depict the most interesting parts of the video. Existing methods typically focus on modeling relationship between different video segments in order to learning a model that can assign highlight scores to these segments; however, these approaches do not explicitly consider the contextual dependency within individual segments. To this end, we propose to learn pixel-level distinctions to improve the video highlight detection. This pixel-level distinction indicates whether or not each pixel in one video belongs to an interesting section. The advantages of modeling such fine-level distinctions are two-fold. First, it allows us to exploit the temporal and spatial relations of the content in one video, since the distinction of a pixel in one frame is highly dependent on both the content before this frame and the content around this pixel in this frame. Second, learning the pixel-level distinction also gives a good explanation to the video highlight task regarding what contents in a highlight segment will be attractive to people. We design an encoder-decoder network to estimate the pixel-level distinction, in which we leverage the 3D convolutional neural networks to exploit the temporal context information, and further take advantage of the visual saliency to model the spatial distinction. State-of-the-art performance on three public benchmarks clearly validates the effectiveness of our framework for video highlight detection.

Abstract (translated)

URL

https://arxiv.org/abs/2204.04615

PDF

https://arxiv.org/pdf/2204.04615.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot