Paper Reading AI Learner

CoDo: Contrastive Learning with Downstream Background Invariance for Detection


Abstract

The prior self-supervised learning researches mainly select image-level instance discrimination as pretext task. It achieves a fantastic classification performance that is comparable to supervised learning methods. However, with degraded transfer performance on downstream tasks such as object detection. To bridge the performance gap, we propose a novel object-level self-supervised learning method, called Contrastive learning with Downstream background invariance (CoDo). The pretext task is converted to focus on instance location modeling for various backgrounds, especially for downstream datasets. The ability of background invariance is considered vital for object detection. Firstly, a data augmentation strategy is proposed to paste the instances onto background images, and then jitter the bounding box to involve background information. Secondly, we implement architecture alignment between our pretraining network and the mainstream detection pipelines. Thirdly, hierarchical and multi views contrastive learning is designed to improve performance of visual representation learning. Experiments on MSCOCO demonstrate that the proposed CoDo with common backbones, ResNet50-FPN, yields strong transfer learning results for object detection.

Abstract (translated)

URL

https://arxiv.org/abs/2205.04617

PDF

https://arxiv.org/pdf/2205.04617.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot