Paper Reading AI Learner

Advanced Feature Learning on Point Clouds using Multi-resolution Features and Learnable Pooling

2022-05-20 04:50:10
Kevin Tirta Wijaya, Dong-Hee Paek, Seung-Hyun Kong

Abstract

Existing point cloud feature learning networks often incorporate sequences of sampling, neighborhood grouping, neighborhood-wise feature learning, and feature aggregation to learn high-semantic point features that represent the global context of a point cloud. Unfortunately, the compounded loss of information concerning granularity and non-maximum point features due to sampling and max pooling could adversely affect the high-semantic point features from existing networks such that they are insufficient to represent the local context of a point cloud, which in turn may hinder the network in distinguishing fine shapes. To cope with this problem, we propose a novel point cloud feature learning network, PointStack, using multi-resolution feature learning and learnable pooling (LP). The multi-resolution feature learning is realized by aggregating point features of various resolutions in the multiple layers, so that the final point features contain both high-semantic and high-resolution information. On the other hand, the LP is used as a generalized pooling function that calculates the weighted sum of multi-resolution point features through the attention mechanism with learnable queries, in order to extract all possible information from all available point features. Consequently, PointStack is capable of extracting high-semantic point features with minimal loss of information concerning granularity and non-maximum point features. Therefore, the final aggregated point features can effectively represent both global and local contexts of a point cloud. In addition, both the global structure and the local shape details of a point cloud can be well comprehended by the network head, which enables PointStack to advance the state-of-the-art of feature learning on point clouds. The codes are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2205.09962

PDF

https://arxiv.org/pdf/2205.09962.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot