Paper Reading AI Learner

Evaluating Gaussian Grasp Maps for Generative Grasping Models

2022-06-01 12:17:20
William Prew, Toby P. Breckon, Magnus Bordewich, Ulrik Beierholm

Abstract

Generalising robotic grasping to previously unseen objects is a key task in general robotic manipulation. The current method for training many antipodal generative grasping models rely on a binary ground truth grasp map generated from the centre thirds of correctly labelled grasp rectangles. However, these binary maps do not accurately reflect the positions in which a robotic arm can correctly grasp a given object. We propose a continuous Gaussian representation of annotated grasps to generate ground truth training data which achieves a higher success rate on a simulated robotic grasping benchmark. Three modern generative grasping networks are trained with either binary or Gaussian grasp maps, along with recent advancements from the robotic grasping literature, such as discretisation of grasp angles into bins and an attentional loss function. Despite negligible difference according to the standard rectangle metric, Gaussian maps better reproduce the training data and therefore improve success rates when tested on the same simulated robot arm by avoiding collisions with the object: achieving 87.94\% accuracy. Furthermore, the best performing model is shown to operate with a high success rate when transferred to a real robotic arm, at high inference speeds, without the need for transfer learning. The system is then shown to be capable of performing grasps on an antagonistic physical object dataset benchmark.

Abstract (translated)

URL

https://arxiv.org/abs/2206.00432

PDF

https://arxiv.org/pdf/2206.00432.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot