Paper Reading AI Learner

Words are all you need? Capturing human sensory similarity with textual descriptors

2022-06-08 18:09:19
Raja Marjieh, Pol van Rijn, Ilia Sucholutsky, Theodore R. Sumers, Harin Lee, Thomas L. Griffiths, Nori Jacoby

Abstract

Recent advances in multimodal training use textual descriptions to significantly enhance machine understanding of images and videos. Yet, it remains unclear to what extent language can fully capture sensory experiences across different modalities. A well-established approach for characterizing sensory experiences relies on similarity judgments, namely, the degree to which people perceive two distinct stimuli as similar. We explore the relation between human similarity judgments and language in a series of large-scale behavioral studies ($N=1,823$ participants) across three modalities (images, audio, and video) and two types of text descriptors: simple word tags and free-text captions. In doing so, we introduce a novel adaptive pipeline for tag mining that is both efficient and domain-general. We show that our prediction pipeline based on text descriptors exhibits excellent performance, and we compare it against a comprehensive array of 611 baseline models based on vision-, audio-, and video-processing architectures. We further show that the degree to which textual descriptors and models predict human similarity varies across and within modalities. Taken together, these studies illustrate the value of integrating machine learning and cognitive science approaches to better understand the similarities and differences between human and machine representations. We present an interactive visualization at this https URL for exploring the similarity between stimuli as experienced by humans and different methods reported in the paper.

Abstract (translated)

URL

https://arxiv.org/abs/2206.04105

PDF

https://arxiv.org/pdf/2206.04105.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot