Paper Reading AI Learner

DisCoVQA: Temporal Distortion-Content Transformers for Video Quality Assessment

2022-06-20 15:31:27
Haoning Wu, Chaofeng Chen, Liang Liao, Jingwen Hou, Wenxiu Sun, Qiong Yan, Weisi Lin

Abstract

The temporal relationships between frames and their influences on video quality assessment (VQA) are still under-studied in existing works. These relationships lead to two important types of effects for video quality. Firstly, some temporal variations (such as shaking, flicker, and abrupt scene transitions) are causing temporal distortions and lead to extra quality degradations, while other variations (e.g. those related to meaningful happenings) do not. Secondly, the human visual system often has different attention to frames with different contents, resulting in their different importance to the overall video quality. Based on prominent time-series modeling ability of transformers, we propose a novel and effective transformer-based VQA method to tackle these two issues. To better differentiate temporal variations and thus capture the temporal distortions, we design a transformer-based Spatial-Temporal Distortion Extraction (STDE) module. To tackle with temporal quality attention, we propose the encoder-decoder-like temporal content transformer (TCT). We also introduce the temporal sampling on features to reduce the input length for the TCT, so as to improve the learning effectiveness and efficiency of this module. Consisting of the STDE and the TCT, the proposed Temporal Distortion-Content Transformers for Video Quality Assessment (DisCoVQA) reaches state-of-the-art performance on several VQA benchmarks without any extra pre-training datasets and up to 10% better generalization ability than existing methods. We also conduct extensive ablation experiments to prove the effectiveness of each part in our proposed model, and provide visualizations to prove that the proposed modules achieve our intention on modeling these temporal issues. We will publish our codes and pretrained weights later.

Abstract (translated)

URL

https://arxiv.org/abs/2206.09853

PDF

https://arxiv.org/pdf/2206.09853.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot