Paper Reading AI Learner

Semi-supervised Contrastive Outlier removal for Pseudo Expectation Maximization

2022-06-28 19:32:50
Sumeet Menon, David Chapman

Abstract

Semi-supervised learning is the problem of training an accurate predictive model by combining a small labeled dataset with a presumably much larger unlabeled dataset. Many methods for semi-supervised deep learning have been developed, including pseudolabeling, consistency regularization, and contrastive learning techniques. Pseudolabeling methods however are highly susceptible to confounding, in which erroneous pseudolabels are assumed to be true labels in early iterations, thereby causing the model to reinforce its prior biases and thereby fail to generalize to strong predictive performance. We present a new approach to suppress confounding errors through a method we describe as Semi-supervised Contrastive Outlier removal for Pseudo Expectation Maximization (SCOPE). Like basic pseudolabeling, SCOPE is related to Expectation Maximization (EM), a latent variable framework which can be extended toward understanding cluster-assumption deep semi-supervised algorithms. However, unlike basic pseudolabeling which fails to adequately take into account the probability of the unlabeled samples given the model, SCOPE introduces an outlier suppression term designed to improve the behavior of EM iteration given a discrimination DNN backbone in the presence of outliers. Our results show that SCOPE greatly improves semi-supervised classification accuracy over a baseline, and furthermore when combined with consistency regularization achieves the highest reported accuracy for the semi-supervised CIFAR-10 classification task using 250 and 4000 labeled samples. Moreover, we show that SCOPE reduces the prevalence of confounding errors during pseudolabeling iterations by pruning erroneous high-confidence pseudolabeled samples that would otherwise contaminate the labeled set in subsequent retraining iterations.

Abstract (translated)

URL

https://arxiv.org/abs/2206.14261

PDF

https://arxiv.org/pdf/2206.14261.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot