Paper Reading AI Learner

Complementary artificial intelligence designed to augment human discovery

2022-07-02 19:36:34
Jamshid Sourati, James Evans

Abstract

Neither artificial intelligence designed to play Turing's imitation game, nor augmented intelligence built to maximize the human manipulation of information are tuned to accelerate innovation and improve humanity's collective advance against its greatest challenges. We reconceptualize and pilot beneficial AI to radically augment human understanding by complementing rather than competing with human cognitive capacity. Our approach to complementary intelligence builds on insights underlying the wisdom of crowds, which hinges on the independence and diversity of crowd members' information and approach. By programmatically incorporating information on the evolving distribution of scientific expertise from research papers, our approach follows the distribution of content in the literature while avoiding the scientific crowd and the hypotheses cognitively available to it. We use this approach to generate valuable predictions for what materials possess valuable energy-related properties (e.g., thermoelectricity), and what compounds possess valuable medical properties (e.g., asthma) that complement the human scientific crowd. We demonstrate that our complementary predictions, if identified by human scientists and inventors at all, are only discovered years further into the future. When we evaluate the promise of our predictions with first-principles equations, we demonstrate that increased complementarity of our predictions does not decrease and in some cases increases the probability that the predictions possess the targeted properties. In summary, by tuning AI to avoid the crowd, we can generate hypotheses unlikely to be imagined or pursued until the distant future and promise to punctuate scientific advance. By identifying and correcting for collective human bias, these models also suggest opportunities to improve human prediction by reformulating science education for discovery.

Abstract (translated)

URL

https://arxiv.org/abs/2207.00902

PDF

https://arxiv.org/pdf/2207.00902.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot