Paper Reading AI Learner

Text to Image Synthesis using Stacked Conditional Variational Autoencoders and Conditional Generative Adversarial Networks

2022-07-06 13:43:56
Haileleol Tibebu, Aadin Malik, Varuna De Silva


Synthesizing a realistic image from textual description is a major challenge in computer vision. Current text to image synthesis approaches falls short of producing a highresolution image that represent a text descriptor. Most existing studies rely either on Generative Adversarial Networks (GANs) or Variational Auto Encoders (VAEs). GANs has the capability to produce sharper images but lacks the diversity of outputs, whereas VAEs are good at producing a diverse range of outputs, but the images generated are often blurred. Taking into account the relative advantages of both GANs and VAEs, we proposed a new stacked Conditional VAE (CVAE) and Conditional GAN (CGAN) network architecture for synthesizing images conditioned on a text description. This study uses Conditional VAEs as an initial generator to produce a high-level sketch of the text descriptor. This high-level sketch output from first stage and a text descriptor is used as an input to the conditional GAN network. The second stage GAN produces a 256x256 high resolution image. The proposed architecture benefits from a conditioning augmentation and a residual block on the Conditional GAN network to achieve the results. Multiple experiments were conducted using CUB and Oxford-102 dataset and the result of the proposed approach is compared against state-ofthe-art techniques such as StackGAN. The experiments illustrate that the proposed method generates a high-resolution image conditioned on text descriptions and yield competitive results based on Inception and Frechet Inception Score using both datasets

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot