Paper Reading AI Learner

Subband-based Generative Adversarial Network for Non-parallel Many-to-many Voice Conversion

2022-07-13 09:03:28
Jian Ma, Zhedong Zheng, Hao Fei, Feng Zheng, Tat-seng Chua, Yi Yang

Abstract

Voice conversion is to generate a new speech with the source content and a target voice style. In this paper, we focus on one general setting, i.e., non-parallel many-to-many voice conversion, which is close to the real-world scenario. As the name implies, non-parallel many-to-many voice conversion does not require the paired source and reference speeches and can be applied to arbitrary voice transfer. In recent years, Generative Adversarial Networks (GANs) and other techniques such as Conditional Variational Autoencoders (CVAEs) have made considerable progress in this field. However, due to the sophistication of voice conversion, the style similarity of the converted speech is still unsatisfactory. Inspired by the inherent structure of mel-spectrogram, we propose a new voice conversion framework, i.e., Subband-based Generative Adversarial Network for Voice Conversion (SGAN-VC). SGAN-VC converts each subband content of the source speech separately by explicitly utilizing the spatial characteristics between different subbands. SGAN-VC contains one style encoder, one content encoder, and one decoder. In particular, the style encoder network is designed to learn style codes for different subbands of the target speaker. The content encoder network can capture the content information on the source speech. Finally, the decoder generates particular subband content. In addition, we propose a pitch-shift module to fine-tune the pitch of the source speaker, making the converted tone more accurate and explainable. Extensive experiments demonstrate that the proposed approach achieves state-of-the-art performance on VCTK Corpus and AISHELL3 datasets both qualitatively and quantitatively, whether on seen or unseen data. Furthermore, the content intelligibility of SGAN-VC on unseen data even exceeds that of StarGANv2-VC with ASR network assistance.

Abstract (translated)

URL

https://arxiv.org/abs/2207.06057

PDF

https://arxiv.org/pdf/2207.06057.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot