Paper Reading AI Learner

HICF: Hyperbolic Informative Collaborative Filtering

2022-07-19 03:45:38
Menglin Yang, Zhihao Li, Min Zhou, Jiahong Liu, Irwin King

Abstract

Considering the prevalence of the power-law distribution in user-item networks, hyperbolic space has attracted considerable attention and achieved impressive performance in the recommender system recently. The advantage of hyperbolic recommendation lies in that its exponentially increasing capacity is well-suited to describe the power-law distributed user-item network whereas the Euclidean equivalent is deficient. Nonetheless, it remains unclear which kinds of items can be effectively recommended by the hyperbolic model and which cannot. To address the above concerns, we take the most basic recommendation technique, collaborative filtering, as a medium, to investigate the behaviors of hyperbolic and Euclidean recommendation models. The results reveal that (1) tail items get more emphasis in hyperbolic space than that in Euclidean space, but there is still ample room for improvement; (2) head items receive modest attention in hyperbolic space, which could be considerably improved; (3) and nonetheless, the hyperbolic models show more competitive performance than Euclidean models. Driven by the above observations, we design a novel learning method, named hyperbolic informative collaborative filtering (HICF), aiming to compensate for the recommendation effectiveness of the head item while at the same time improving the performance of the tail item. The main idea is to adapt the hyperbolic margin ranking learning, making its pull and push procedure geometric-aware, and providing informative guidance for the learning of both head and tail items. Extensive experiments back up the analytic findings and also show the effectiveness of the proposed method. The work is valuable for personalized recommendations since it reveals that the hyperbolic space facilitates modeling the tail item, which often represents user-customized preferences or new products.

Abstract (translated)

URL

https://arxiv.org/abs/2207.09051

PDF

https://arxiv.org/pdf/2207.09051.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot