Paper Reading AI Learner

BabelBERT: Massively Multilingual Transformers Meet a Massively Multilingual Lexical Resource

2022-08-01 17:47:03
Tommaso Green, Simone Paolo Ponzetto, Goran Glavaš

Abstract

While pretrained language models (PLMs) primarily serve as general purpose text encoders that can be fine-tuned for a wide variety of downstream tasks, recent work has shown that they can also be rewired to produce high-quality word representations (i.e., static word embeddings) and yield good performance in type-level lexical tasks. While existing work primarily focused on lexical specialization of PLMs in monolingual and bilingual settings, in this work we expose massively multilingual transformers (MMTs, e.g., mBERT or XLM-R) to multilingual lexical knowledge at scale, leveraging BabelNet as the readily available rich source of multilingual and cross-lingual type-level lexical knowledge. Concretely, we leverage BabelNet's multilingual synsets to create synonym pairs across $50$ languages and then subject the MMTs (mBERT and XLM-R) to a lexical specialization procedure guided by a contrastive objective. We show that such massively multilingual lexical specialization brings massive gains in two standard cross-lingual lexical tasks, bilingual lexicon induction and cross-lingual word similarity, as well as in cross-lingual sentence retrieval. Crucially, we observe gains for languages unseen in specialization, indicating that the multilingual lexical specialization enables generalization to languages with no lexical constraints. In a series of subsequent controlled experiments, we demonstrate that the pretraining quality of word representations in the MMT for languages involved in specialization has a much larger effect on performance than the linguistic diversity of the set of constraints. Encouragingly, this suggests that lexical tasks involving low-resource languages benefit the most from lexical knowledge of resource-rich languages, generally much more available.

Abstract (translated)

URL

https://arxiv.org/abs/2208.01018

PDF

https://arxiv.org/pdf/2208.01018.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot